A red-black tree is a binary search tree in which each node, , has a colour which is either red or black. Red is represented by the value 0 and black by the value .
Before and after any operation on a red-black tree, the following two properties are satisfied. Each property is defined both in terms of the colours red and black, and in terms of the numeric values 0 and 1.
Notice that we can always colour the root, , of a red-black tree black without violating either of these two properties, so we will assume that the root is black, and the algorithms for updating a red-black tree will maintain this. Another trick that simplifies red-black trees is to treat the external nodes (represented by ) as black nodes. This way, every real node, , of a red-black tree has exactly two children, each with a well-defined colour. An example of a red-black tree is shown in Figure 9.4.
|
At first it might seem surprising that a red-black tree can be efficiently updated to maintain the black-height and no-red-edge properties, and it seems unusual to even consider these as useful properties. However, red-black trees were designed to be an efficient simulation of 2-4 trees as binary trees.
Refer to Figure 9.5. Consider any red-black tree, , having nodes and perform the following transformation: Remove each red node and connect 's two children directly to the (black) parent of . After this transformation we are left with a tree having only black nodes.
Every internal node in has two, three, or four children: A black node that started out with two black children will still have two black children after this transformation. A black node that started out with one red and one black child will have three children after this transformation. A black node that started out with two red children will have four children after this transformation. Furthermore, the black-height property now guarantees that every root-to-leaf path in has the same length. In other words, is a 2-4 tree!
The 2-4 tree has leaves that correspond to the external nodes of the red-black tree. Therefore, this tree has height at most . Now, every root to leaf path in the 2-4 tree corresponds to a path from the root of the red-black tree to an external node. The first and last node in this path are black and at most one out of every two internal nodes is red, so this path has at most black nodes and at most red nodes. Therefore, the longest path from the root to any internal node in is at most
Now that we have seen the relationship between 2-4 trees and red-black trees, it is not hard to believe that we can efficiently maintain a red-black tree while adding and removing elements.
We have already seen that adding an element in a BinarySearchTree can be done by adding a new leaf. Therefore, to implement in a red-black tree we need a method of simulating splitting a node with five children in a 2-4 tree. A 2-4 tree node with five children is represented by a black node that has two red children, one of which also has a red child. We can ``split'' this node by colouring it red and colouring its two children black. An example of this is shown in Figure 9.6.
|
Similarly, implementing requires a method of merging two nodes and borrowing a child from a sibling. Merging two nodes is the inverse of a split (shown in Figure 9.6), and involves colouring two (black) siblings red and colouring their (red) parent black. Borrowing from a sibling is the most complicated of the procedures and involves both rotations and recolouring nodes.
Of course, during all of this we must still maintain the no-red-edge property and the black-height property. While it is no longer surprising that this can be done, there are a large number of cases that have to be considered if we try to do a direct simulation of a 2-4 tree by a red-black tree. At some point, it just becomes simpler to disregard the underlying 2-4 tree and work directly towards maintaining the properties of the red-black tree.
No single definition of red-black trees exists. Rather, there is a family of structures that manage to maintain the black-height and no-red-edge properties during and operations. Different structures do this in different ways. Here, we implement a data structure that we call a RedBlackTree. This structure implements a particular variant of red-black trees that satisfies an additional property:
Note that the red-black tree shown in Figure 9.4 does not satisfy the left-leaning property; it is violated by the parent of the red node in the rightmost path.
The reason for maintaining the left-leaning property is that it reduces the number of cases encountered when updating the tree during and operations. In terms of 2-4 trees, it implies that every 2-4 tree has a unique representation: A node of degree two becomes a black node with two black children. A node of degree three becomes a black node whose left child is red and whose right child is black. A node of degree four becomes a black node with two red children.
Before we describe the implementation of
and
in
detail, we first present some simple subroutines used by these methods
that are illustrated in Figure 9.7. The first two
subroutines are for manipulating colours while preserving the black-height
property. The
method takes as input a black node
that has two red children and colours
red and its two children black.
The
method reverses this operation:
The
method swaps the colours of
and
and then performs a left rotation at
. This method reverses the
colours of these two nodes as well as their parent-child relationship:
The
operation
is especially useful in restoring the left-leaning property at a node
that violates it (because
is black and
is red).
In this special case, we can be assured that this operation preserves both
the black-height and no-red-edge properties. The
operation
is symmetric with
, when the roles of left and right are reversed.
To implement
in a RedBlackTree, we perform a standard
BinarySearchTree insertion to add a new leaf,
, with
and
set
. Note that this does not change the black height
of any node, so it does not violate the black-height property. It may,
however, violate the left-leaning property (if
is the right child of
its parent), and it may violate the no-red-edge property (if
's parent
is
). To restore these properties, we call the method
.
Illustrated in Figure 9.8, the method takes as input a node whose colour is red and which may violate the no-red-edge property and/or the left-leaning property. The following discussion is probably impossible to follow without referring to Figure 9.8 or recreating it on a piece of paper. Indeed, the reader may wish to study this figure before continuing.
If is the root of the tree, then we can colour black to restore both properties. If 's sibling is also red, then 's parent must be black, so both the left-leaning and no-red-edge properties already hold.
Otherwise, we first determine if 's parent, , violates the left-leaning property and, if so, perform a operation and set . This leaves us in a well-defined state: is the left child of its parent, , so now satisfies the left-leaning property. All that remains is to ensure the no-red-edge property at . We only have to worry about the case in which is red, since otherwise already satisfies the no-red-edge property.
Since we are not done yet, is red and is red. The no-red-edge property (which is only violated by and not by ) implies that 's grandparent exists and is black. If 's right child is red, then the left-leaning property ensures that both 's children are red, and a call to makes red and black. This restores the no-red-edge property at , but may cause it to be violated at , so the whole process starts over with .
If
's right child is black, then a call to
makes
the (black) parent of
and gives
two red children,
and
. This ensures that
satisfies the no-red-edge property and
satisfies the left-leaning property. In this case we can stop.
The method takes constant time per iteration and each iteration either finishes or moves closer to the root. Therefore, the method finishes after iterations in time.
The operation in a RedBlackTree is the most complicated to implement, and this is true of all known red-black tree variants. Just like the operation in a BinarySearchTree, this operation boils down to finding a node with only one child, , and splicing out of the tree by having adopt .
The problem with this is that, if
is black, then the black-height
property will now be violated at
. We may avoid this problem,
temporarily, by adding
to
. Of course, this introduces
two other problems: (1) if
and
both started out black, then
(double black), which is an invalid colour.
If
was red, then it is replaced by a black node
, which may
violate the left-leaning property at
. Both of these
problems can be resolved with a call to the
method.
The
method takes as its input a node
whose colour is black
(1) or double-black (2). If
is double-black, then
performs a series of rotations and recolouring operations that move the
double-black node up the tree until it can be eliminated. During this
process, the node
changes until, at the end of this process,
refers to the root of the subtree that has been changed. The root of
this subtree may have changed colour. In particular, it may have gone
from red to black, so the
method finishes by checking
if
's parent violates the left-leaning property and, if so, fixing it.
The method is illustrated in Figure 9.9. Again, the following text will be difficult, if not impossible, to follow without referring to Figure 9.9. Each iteration of the loop in processes the double-black node , based on one of four cases:
Case 0: is the root. This is the easiest case to treat. We recolour to be black (this does not violate any of the red-black tree properties).
Case 1:
's sibling,
, is red. In this case,
's sibling is the
left child of its parent,
(by the left-leaning property). We perform
a right-flip at
and then proceed to the next iteration. Note that
this action causes
's parent to violate the left-leaning property and
the depth of
to increase. However, it also implies that the next
iteration will be in Case 3 with
coloured red. When examining Case 3
below, we will see that the process will stop during the next iteration.
Case 2: 's sibling, , is black, and is the left child of its parent, . In this case, we call , making black, red, and darkening the colour of to black or double-black. At this point, does not satisfy the left-leaning property, so we call to fix this.
At this point, is red and is the root of the subtree with which we started. We need to check if causes the no-red-edge property to be violated. We do this by inspecting 's right child, . If is black, then satisfies the no-red-edge property and we can continue the next iteration with .
Otherwise ( is red), so both the no-red-edge property and the left-leaning properties are violated at and , respectively. The left-leaning property is restored with a call to , but the no-red-edge property is still violated. At this point, is the left child of , is the left child of , and are both red, and is black or double-black. A makes the parent of both and . Following this up by a makes both and black and sets the colour of back to the original colour of .
At this point, the double-black node is has been eliminated and the
no-red-edge and black-height properties are reestablished. Only one possible problem remains: the right child of
may be red, in which
case the left-leaning property would be violated. We check this and
perform a
to correct it if necessary.
Case 3: 's sibling is black and is the right child of its parent, . This case is symmetric to Case 2 and is handled mostly the same way. The only differences come from the fact that the left-leaning property is asymmetric, so it requires different handling.
As before, we begin with a call to , which makes red and black. A call to promotes to the root of the subtree. At this point is red, and the code branches two ways depending on the colour of 's left child, .
If is red, then the code finishes up exactly the same way as Case 2 does, but is even simpler since there is no danger of not satisfying the left-leaning property.
The more complicated case occurs when is black. In this case, we examine the colour of 's left child. If it is red, then has two red children and its extra black can be pushed down with a call to . At this point, now has 's original colour, and we are done.
If
's left child is black, then
violates the left-leaning property,
and we restore this with a call to
. We then return the
node
so that the next iteration of
then continues
with
.
Each iteration of takes constant time. Cases 2 and 3 either finish or move closer to the root of the tree. Case 0 (where is the root) always terminates and Case 1 leads immediately to Case 3, which also terminates. Since the height of the tree is at most , we conclude that there are at most iterations of , so runs in time.
opendatastructures.org