
Open Data Structures (in Java)
Pat Morin

Edition 0.1E

Acknowledgments

I am grateful to Nima Hoda, who spent a summer tirelessly proofreading many of the

chapters in this book, and to the students in the Fall 2011 offering of COMP2402/2002,

who put up with the first draft of this book and spotted many typographic, grammatical,

and factual errors in the first draft.

i

Why This Book?

There are plenty of books that teach introductory data structures. Some of them are very

good. Most of them cost money, and the vast majority of computer science undergraduate

students will shell-out at least some cash on a data structures book.

There are a few free data structures books available online. Some are very good, but

most of them are getting old. The majority of these books became free when the author

and/or publisher decided to stop updating them. Updating these books is usually not

possible, for two reasons: (1) The copyright belongs to the author or publisher, who may

not allow it. (2) The source code for these books is often not available. That is, the Word,

WordPerfect, FrameMaker, or LATEX source for the book is not available, and the version of

the software that handles this source may not even be available.

The goal of this project is to forever free undergraduate computer science students

from having to pay for an introductory data structures book. I have decided to implement

this goal by treating this book like an Open Source software project. The LATEX source, Java

source, and build scripts for the book are available for download on the book’s website

(opendatastructures.org) and also, more importantly, on a reliable source code man-

agement site (github.com/patmorin/ods).

This source code is released under a Creative Commons Attribution license, mean-

ing that anyone is free to share: to copy, distribute and transmit the work; and to remix: to

adapt the work, including the right to make commercial use of the work. The only condi-

tion on these rights is attribution: you must acknowledge that the derived work contains

code and/or text from opendatastructures.org.

Anyone can contribute corrections/fixes using the git source-code management

system. Anyone can fork from the current version of the book and develop their own

version (for example, in another programming language). They can then ask that their

changes be merged back into my version. My hope is that, by doing things this way, this

book will continue to be a useful textbook long after my interest in the project (or my

pulse, whichever comes first) has waned.

iii

opendatastructures.org
github.com/patmorin/ods
opendatastructures.org

iv

Contents

1 Introduction 1

1.0.1 The Need for Efficiency . 2

1.1 Interfaces . 4

1.1.1 The Queue, Stack, and Deque Interfaces 4

1.1.2 The List Interface: Linear Sequences 6

1.1.3 The USet Interface: Unordered Sets . 7

1.1.4 The SSet Interface: Sorted Sets . 7

1.2 Mathematical Background . 8

1.2.1 Exponentials and Logarithms . 9

1.2.2 Factorials . 10

1.2.3 Asymptotic Notation . 10

1.2.4 Randomization and Probability . 15

1.3 The Model of Computation . 17

1.4 Correctness, Time Complexity, and Space Complexity 17

1.5 Code Samples . 19

1.6 List of Data Structures . 20

1.7 Discussion and Exercises . 23

2 Array-Based Lists 27

2.1 ArrayStack: Fast Stack Operations Using an Array 28

2.1.1 The Basics . 28

2.1.2 Growing and Shrinking . 30

2.1.3 Summary . 32

2.2 FastArrayStack: An Optimized ArrayStack 32

v

Contents Contents

2.3 ArrayQueue: An Array-Based Queue . 33

2.3.1 Summary . 36

2.4 ArrayDeque: Fast Deque Operations Using an Array 37

2.4.1 Summary . 39

2.5 DualArrayDeque: Building a Deque from Two Stacks 39

2.5.1 Balancing . 42

2.5.2 Summary . 44

2.6 RootishArrayStack: A Space-Efficient Array Stack 44

2.6.1 Analysis of Growing and Shrinking . 48

2.6.2 Space Usage . 49

2.6.3 Summary . 49

2.6.4 Computing Square Roots . 50

2.7 Discussion and Exercises . 53

3 Linked Lists 57

3.1 SLList: A Singly-Linked List . 57

3.1.1 Queue Operations . 59

3.1.2 Summary . 60

3.2 DLList: A Doubly-Linked List . 60

3.2.1 Adding and Removing . 62

3.2.2 Summary . 63

3.3 SEList: A Space-Efficient Linked List . 64

3.3.1 Space Requirements . 65

3.3.2 Finding Elements . 65

3.3.3 Adding an Element . 67

3.3.4 Removing an Element . 69

3.3.5 Amortized Analysis of Spreading and Gathering 71

3.3.6 Summary . 72

3.4 Discussion and Exercises . 73

4 Skiplists 77

4.1 The Basic Structure . 77

vi

Contents Contents

4.2 SkiplistSSet: An Efficient SSet Implementation 79

4.2.1 Summary . 82

4.3 SkiplistList: An Efficient Random-Access List Implementation 82

4.3.1 Summary . 87

4.4 Analysis of Skiplists . 87

4.5 Discussion and Exercises . 90

5 Hash Tables 95

5.1 ChainedHashTable: Hashing with Chaining 95

5.1.1 Multiplicative Hashing . 97

5.1.2 Summary . 101

5.2 LinearHashTable: Linear Probing . 101

5.2.1 Analysis of Linear Probing . 104

5.2.2 Summary . 107

5.2.3 Tabulation Hashing . 107

5.3 Hash Codes . 108

5.3.1 Hash Codes for Primitive Data Types 109

5.3.2 Hash Codes for Compound Objects . 109

5.3.3 Hash Codes for Arrays and Strings . 111

5.4 Discussion and Exercises . 113

6 Binary Trees 119

6.1 BinaryTree: A Basic Binary Tree . 120

6.1.1 Recursive Algorithms . 121

6.1.2 Traversing Binary Trees . 121

6.2 BinarySearchTree: An Unbalanced Binary Search Tree 124

6.2.1 Searching . 124

6.2.2 Addition . 126

6.2.3 Removal . 128

6.2.4 Summary . 130

6.3 Discussion and Exercises . 130

vii

Contents Contents

7 Random Binary Search Trees 135

7.1 Random Binary Search Trees . 135

7.1.1 Proof of Lemma 7.1 . 137

7.1.2 Summary . 139

7.2 Treap: A Randomized Binary Search Tree . 139

7.2.1 Summary . 148

7.3 Discussion and Exercises . 148

8 Scapegoat Trees 153

8.1 ScapegoatTree: A Binary Search Tree with Partial Rebuilding 154

8.1.1 Analysis of Correctness and Running-Time 157

8.1.2 Summary . 159

8.2 Discussion and Exercises . 160

9 Red-Black Trees 165

9.1 2-4 Trees . 166

9.1.1 Adding a Leaf . 166

9.1.2 Removing a Leaf . 168

9.2 RedBlackTree: A Simulated 2-4 Tree . 168

9.2.1 Red-Black Trees and 2-4 Trees . 170

9.2.2 Left-Leaning Red-Black Trees . 173

9.2.3 Addition . 174

9.2.4 Removal . 177

9.3 Summary . 182

9.4 Discussion and Exercises . 183

10 Heaps 187

10.1 BinaryHeap: An Implicit Binary Tree . 187

10.1.1 Summary . 191

10.2 MeldableHeap: A Randomized Meldable Heap 191

10.2.1 Analysis of merge(h1,h2) . 195

10.2.2 Summary . 197

viii

Contents Contents

10.3 Discussion and Exercises . 197

11 Sorting Algorithms 199

11.1 Comparison-Based Sorting . 200

11.1.1 Merge-Sort . 200

11.1.2 Quicksort . 203

11.1.3 Heap-sort . 206

11.1.4 A Lower-Bound for Comparison-Based Sorting 208

11.2 Counting Sort and Radix Sort . 211

11.2.1 Counting Sort . 211

11.2.2 Radix-Sort . 213

11.3 Discussion and Exercises . 214

12 Graphs 219

12.1 AdjacencyMatrix: Representing a Graph by a Matrix 221

12.2 AdjacencyLists: A Graph as a Collection of Lists 224

12.3 Graph Traversal . 227

12.3.1 Breadth-First Search . 227

12.3.2 Depth-First Search . 229

12.4 Discussion and Exercises . 231

13 Data Structures for Integers 235

13.1 BinaryTrie: A digital search tree . 236

13.2 XFastTrie: Searching in Doubly-Logarithmic Time 241

13.3 YFastTrie: A Doubly-Logarithmic Time SSet 243

13.4 Discussion and Exercises . 248

14 External Memory Searching 251

14.1 The Block Store . 252

14.2 B-Trees . 253

14.2.1 Searching . 255

14.2.2 Addition . 257

ix

Contents Contents

14.2.3 Removal . 261

14.2.4 Amortized Analysis of B-Trees . 267

14.3 Discussion and Exercises . 269

x

Chapter 1

Introduction

Every computer science curriculum in the world includes a course on data structures and

algorithms. Data structures are that important; they improve our quality of life and even

save lives on a regular basis. Many multi-million and several multi-billion dollar compa-

nies have been built around data structures.

How can this be? If we think about it for even a few minutes, we realize that we

interact with data structures constantly.

• Open a file: File system data structures are used to locate the parts of that file on

disk so they can be retrieved. This isn’t easy; disks contain hundreds of millions of

blocks. The contents of your file could be stored on any one of them.

• Look up a contact on your phone: A data structure is used to lookup a phone number

based on partial information even before you finish dialing/typing. This isn’t easy;

your phone may contain information about a lot of people—everyone you have ever

had phone or email contact with—and your phone doesn’t have a very fast processor

or a lot of memory.

• Login to your favourite social network: The network servers use your login infor-

mation look up your account information. This isn’t easy; the most popular social

networks have hundreds of millions of active users.

• Do a web search: The search engine uses data structures to find the web pages con-

taining your search terms. This isn’t easy; there are over 8.5 billion web pages on the

Internet and each page contains a lot of potential search terms.

• Phone emergency services (9-1-1): The emergency services network looks up your

phone number in a data structure that maps phone numbers to addresses so that

1

1. Introduction

police cars, ambulances, or fire trucks can be sent there without delay. This is impor-

tant; the person making the call may not be able to provide the exact address they

are calling from and a delay can mean the difference between life or death.

1.0.1 The Need for Efficiency

In the next section, we look at the operations supported by the most commonly used data

structures. Anyone with even a little bit of programming experience will see that these

operations are not hard to implement correctly. We can store the data in an array or a

linked list and each operation can be implemented by iterating over all the elements of

the array or list and possibly adding or removing an element.

This kind of implementation is easy, but not very efficient. Does it really mat-

ter? Computers are getting faster and faster. Maybe the obvious implementation is good

enough. Let’s do some back-of-the-envelope calculations to find out.

Number of operations: Imagine an application with a moderately-sized data set, say of

one million (106), items. It is reasonable, in most applications, to assume that the applica-

tion will want to look up each item at least once. This means we can expect to do at least

one million (106) lookups in this data. If each of these 106 lookups inspects each of the

106 items, this gives a total of 106 × 106 = 1012 (one thousand billion) inspections.

Processor speeds: At the time of writing, even a very fast desktop computer can not do

more than one billion (109) operations per second.1 This means that this application will

take at least 1012/109 = 1000 seconds, or roughly 16 minutes and 40 seconds. 16 minutes

is an eon in computer time, but a person might be willing to put up with it (if they were

headed out for a coffee break).

Bigger data sets: Now consider a company like Google, that indexes over 8.5 billion web

pages. By our calculations, doing any kind of query over this data would take at least 8.5

seconds. We already know that this isn’t the case; web searches complete in much less than

8.5 seconds, and they do much more complicated queries than just asking if a particular

page is in their list of indexed pages. At the time of writing, Google receives approximately

4,500 queries per second, meaning that they would require at least 4,500 × 8.5 = 38,250

very fast servers just to keep up.

1Computer speeds are at most a few gigahertz (billions of cycles per second) and each operation typically

takes a few cycles.

2

1. Introduction

The solution: These examples tell us that the obvious implementations of data structures

do not scale well when the number of items, n, in the data structure and the number of

operations, m, performed on the data structure are both large. In these cases, the time

(measured in, say, machine instructions) is roughly n×m.

The solution, of course, is to carefully organize data within the data structure so

that not every operation requires inspecting every data item. Although it sounds impossi-

ble at first, we will see data structures where a search requires looking at only 2 items on

average, independent of the number of items stored in the data structure. In our billion

instruction per second computer it takes only 0.000000002 seconds to search in a data

structure containing a billion items (or a trillion, or a quadrillion, or even a quintillion

items).

We will also see implementations of data structures that keep the items in sorted

order, where the number of items inspected during an operation grows very slowly as a

function of the number of items in the data structure. For example, we can maintain a

sorted set of one billion items while inspecting at most 60 items during any operation.

In our billion instruction per second computer, these operations take 0.00000006 seconds

each.

The remainder of this chapter briefly reviews some of the main concepts used

throughout the rest of the book. Section 1.1 describes the interfaces implemented by all

the data structures described in this book and should be considered required reading. The

remaining sections discuss:

• some mathematical background including exponentials, logarithms, factorials, asymp-

totic (big-Oh) notation, probability, and randomization;

• the model of computation;

• correctness, running time, and space;

• an overview of the rest of the chapters; and

• the sample code and typesetting conventions.

A reader with or without a background in these areas can easily skip them now and come

back to them later if necessary.

3

1. Introduction 1.1. Interfaces

1.1 Interfaces

In discussing data structures, it is important to understand the difference between a data

structure’s interface and its implementation. An interface describes what a data structure

does, while an implementation describes how the data structure does it.

An interface, sometimes also called an abstract data type, defines the set of opera-

tions supported by a data structure and the semantics, or meaning, of those operations.

An interface tells us nothing about how the data structure implements these operations, it

only provides the list of supported operations along with specifications about what types

of arguments each operation accepts and the value returned by each operation.

A data structure implementation on the other hand, includes the internal represen-

tation of the data structure as well as the definitions of the algorithms that implement the

operations supported by the data structure. Thus, there can be many implementations of a

single interface. For example, in Chapter 2, we will see implementations of the List inter-

face using arrays and in Chapter 3 we will see implementations of the List interface using

pointer-based data structures. Each implements the same interface, List, but in different

ways.

1.1.1 The Queue, Stack, and Deque Interfaces

The Queue interface represents a collection of elements to which we can add elements and

remove the next element. More precisely, the operations supported by the Queue interface

are

• add(x): add the value x to the Queue

• remove(): remove the next (previously added) value, y, from the Queue and return y

Notice that the remove() operation takes no argument. The Queue’s queueing discipline

decides which element should be removed. There are many possible queueing disciplines,

the most common of which include FIFO, priority, and LIFO.

A FIFO (first-in-first-out) Queue, illustrated in Figure 1.1, removes items in the same

order they were added, much in the same way a queue (or line-up) works when checking

out at a cash register in a grocery store. This is the most common kind of Queue so the

qualifier FIFO is often ommitted. In other texts, the add(x) and remove() operations on a

FIFO Queue are often called enqueue(x) and dequeue(), respectively.

A priority Queue, illustrated in Figure 1.2, always removes the smallest element

from the Queue, breaking ties arbitrarily. This is similar to the way patients are triaged

4

1. Introduction 1.1. Interfaces

x · · ·

add(x)/enqueue(x) remove()/dequeue()

Figure 1.1: A FIFO Queue.

16

add(x) remove()/deleteMin()

x
6

13

3

Figure 1.2: A priority Queue.

in a hospital emergency room. As patients arrive they are evaluated and then placed in a

waiting room. When a doctor becomes available they first treat the patient with the most

life-threatening condition. The remove(x) operation on a priority Queue is usually called

deleteMin() in other texts.

A very common queueing discipline is the LIFO (last-in-first-out) discipline, illus-

trated in Figure 1.3. In a LIFO Queue, the most recently added element is the next one

removed. This is best visualized in terms of a stack of plates; plates are placed on the top

of the stack and also removed from the top of the stack. This structure is so common that

it gets its own name: Stack. Often, when discussing a Stack, the names of add(x) and

remove() are changed to push(x) and pop(); this is to avoid confusing the LIFO and FIFO

queueing disciplines.

A Deque is a generalization of both the FIFO Queue and LIFO Queue (Stack). A

Deque represents a sequence of elements, with a front and a back. Elements can be added

at the front of the sequence or the back of the sequence. The names of the operations on

· · ·

remove()/ pop()

add(x)/push(x)

x

Figure 1.3: A stack.

5

1. Introduction 1.1. Interfaces

e

4 5 6 7 n− 1
· · ·f b k ca

0 1 2 3

b c d

· · ·

Figure 1.4: A List represents a sequence indexed by 0,1,2, . . . ,n. In this List a call to

get(2) would return the value c.

a Deque are self-explanatory: addFirst(x), removeFirst(), addLast(x), and removeLast().

Notice that a Stack can be implemented using only addFirst(x) and removeFirst() while

a FIFO Queue can be implemented using only addLast(x) and removeFirst().

1.1.2 The List Interface: Linear Sequences

This book will talk very little about the FIFO Queue, Stack, or Deque interfaces. This

is because these interfaces are subsumed by the List interface. A List, illustrated in

Figure 1.4, represents a sequence, x0, . . . ,xn−1, of values. The List interface includes the

following operations:

1. size(): return n, the length of the list

2. get(i): return the value xi

3. set(i,x): set the value of xi equal to x

4. add(i,x): add x at position i, displacing xi, . . . ,xn−1;

Set xj+1 = xj , for all j ∈ {n− 1, . . . ,i}, increment n, and set xi = x

5. remove(i) remove the value xi, displacing xi+1, . . . ,xn−1;

Set xj = xj+1, for all j ∈ {i, . . . ,n− 2} and decrement n

Notice that these operations are easily sufficient to implement the Deque interface:

addFirst(x) ⇒ add(0,x)

removeFirst() ⇒ remove(0)

addLast(x) ⇒ add(size(),x)

removeLast() ⇒ remove(size()− 1)

Although we will normally not discuss the Stack, Deque and FIFO Queue interfaces

in subsequent chapters, the terms Stack and Deque are sometimes used in the names of

data structures that implement the List interface. When this happens, it is to highlight the

6

1. Introduction 1.1. Interfaces

fact that these data structures can be used to implement the Stack or Deque interface very

efficiently. For example, the ArrayDeque class is an implementation of the List interface

that implements all the Deque operations in constant time per operation.

1.1.3 The USet Interface: Unordered Sets

The USet interface represents an unordered set of unique elements, mimicking a mathe-

matical set. A USet contains n distinct elements; no element appears more than once; the

elements are in no specific order. A USet supports the following operations:

1. size(): return the number, n, of elements in the set

2. add(x): add the element x to the set if not already present;

Add x to the set provided that there is no element y in the set such that x equals y.

Return true if x was added to the set and false otherwise.

3. remove(x): remove x from the set;

Find an element y in the set such that x equals y and remove y. Return y, or null if

no such element exists.

4. find(x): find x in the set if it exists;

Find an element y in the set such that y equals x. Return y, or null if no such element

exists.

These definitions are a bit fussy about distinguishing x, the element we are remov-

ing or finding, from y, the element we remove or find. This is because x and y might

actually be distinct objects that are nevertheless treated as equal.2 This is a very useful

distinction since it allows for the creation of dictionaries or maps that map keys onto val-

ues. This is done by creating a compound object called a Pair that contains a key and a

value. Two Pairs are treated as equal if their keys are equal. By storing Pairs in a USet,

we can find the value associated with any key k by creating a Pair, x, with key k and using

the find(x) method.

1.1.4 The SSet Interface: Sorted Sets

The SSet interface represents a sorted set of elements. An SSet stores elements from some

total order, so that any two elements x and y can be compared. In code examples, this will

2In Java, this is done by overriding the class’ equals(y) and hashCode() methods.

7

1. Introduction 1.2. Mathematical Background

be done with a method called compare(x,y) in which

compare(x,y)



< 0 if x < y

> 0 if x > y

= 0 if x = y

An SSet supports the size(), add(x), and remove(x) methods with exactly the same seman-

tics as in the USet interface. The difference between a USet and an SSet is in the find(x)

method:

4. find(x): locate x in the sorted set;

Find the smallest element y in the set such that y ≥ x. Return y or null if no such

element exists.

This version of the find(x) operation is sometimes referred to as a successor search.

It differs in a fundamental way from USet.find(x) since it returns a meaningful result even

when there is no element in the set that is equal to x.

The distinction between the USet and SSet find(x) operations is very important

and is very often missed. The extra functionality provided by an SSet usually comes with

a price that includes both a larger running time and a higher implementation complexity.

For example, most of the SSet implementations discussed in this book all have find(x)

operations with running times that are logarithmic in the size of the set. On the other

hand, the implementation of a USet as a ChainedHashTable in Chapter 5 has a find(x)

operation that runs in constant expected time. When choosing which of these structures

to use, one should always use a USet unless the extra functionality offered by an SSet is

really needed.

1.2 Mathematical Background

In this section, we review some mathematical notations and tools used throughout this

book, including logarithms, big-Oh notation, and probability theory. This is intended to

be a review of these topics, not an introduction. Any reader who feels they are missing

this background is encouraged to read, and do exercises from, the appropriate sections of

the very good (and free) textbook on mathematics for computer science [50].

8

1. Introduction 1.2. Mathematical Background

1.2.1 Exponentials and Logarithms

The expression bx denotes the number b raised to the power of x. If x is a positive integer,

then this is just the value of b multiplied by itself x − 1 times:

bx = b × b × · · · × b︸ ︷︷ ︸
x

.

When x is a negative integer, bx = 1/b−x. When x = 0, bx = 1. When b is not an integer, we

can still define exponentiation in terms of the exponential function ex (see below), which

is itself defined in terms of the exponential series, but this is best left to a calculus text.

In this book, the expression logb k denotes the base-b logarithm of k. That is, the

unique value x that satisfies

bx = k .

Most of the logarithms in this book are base 2 (binary logarithms), in which case we drop

the base, so that logk is shorthand for log2 k.

An informal, but useful, way to think about logarithms is to think of logb k as the

number of times we have to divide k by b before the result is less than or equal to 1. For

example, when one does binary search, each comparison reduces the number of possible

answers by a factor of 2. This is repeated until there is at most one possible answer. There-

fore, the number of comparison done by binary search when there are initially at most n+1

possible answers is at most dlog2(n+ 1)e.
Another logarithm that comes up several times in this book is the natural logarithm.

Here we use the notation lnk to denote loge k, where e — Euler’s constant — is given by

e = lim
n→∞

(
1 +

1
n

)n
≈ 2.71828 .

The natural logarithm comes up frequently because it is the value of a particularly com-

mon integral: ∫ k

1
1/xdx = lnk .

Two of the most common manipulations we do with logarithms are removing them from

an exponent:

blogb k = k

and changing the base of a logarithm:

logb k =
loga k
loga b

.

9

1. Introduction 1.2. Mathematical Background

For example, we can use these two manipulations to compare the natural and binary log-

arithms

lnk =
logk
loge

=
logk

(lne)/(ln2)
= (ln2)(logk) ≈ 0.693147logk .

1.2.2 Factorials

In one or two places in this book, the factorial function is used. For a non-negative integer

n, the notation n! (pronounced “n factorial”) is defined to mean

n! = 1 · 2 · 3 · · · · ·n .

Factorials appear because n! counts the number of distinct permutations, i.e., orderings,

of n distinct elements. For the special case n = 0, 0! is defined as 1.

The quantity n! can be approximated using Stirling’s Approximation:

n! =
√

2πn
(n
e

)n
eα(n) ,

where
1

12n+ 1
< α(n) <

1
12n

.

Stirling’s Approximation also approximates ln(n!):

ln(n!) = n lnn−n+
1
2

ln(2πn) +α(n)

(In fact, Stirling’s Approximation is most easily proven by approximating ln(n!) = ln1 +

ln2 + · · ·+ lnn by the integral
∫ n

1 lnndn = n lnn−n+ 1.)

Related to the factorial function are the binomial coefficients. For a non-negative

integer n and an integer k ∈ {0, . . . ,n}, the notation
(n
k

)
denotes:

(
n
k

)
=

n!
k!(n− k)!

.

The binomial coefficient
(n
k

)
(pronounced “n choose k”) counts the number of subsets of an

n element set that have size k, i.e., the number of ways of choosing k distinct integers from

the set {1, . . . ,n}.

1.2.3 Asymptotic Notation

When analyzing data structures in this book, we will want to talk about the running times

of various operations. The exact running times will, of course, vary from computer to

computer and even from run to run on an individual computer. When we talk about the

10

1. Introduction 1.2. Mathematical Background

running time of an operation we are referring to the number of computer instructions

performed during the operation. Even for simple code, this quantity can be difficult to

compute exactly. Therefore, instead of analyzing running times exactly, we will use the

so-called big-Oh notation: For a function f (n), O(f (n)) denotes a set of functions,

O(f (n)) = {g(n) : there exists c > 0, and n0 such that g(n) ≤ c · f (n) for all n ≥ n0} .

Thinking graphically, this set consists of the functions g(n) where c ·f (n) starts to dominate

g(n) when n is sufficiently large.

We generally use asymptotic notation to simplify functions. For example, in place

of 5n logn+ 8n− 200 we can write, simply, O(n logn). This is proven as follows:

5n logn+ 8n− 200 ≤ 5n logn+ 8n

≤ 5n logn+ 8n logn for n ≥ 2 (so that logn ≥ 1)

≤ 13n logn

which demonstrates that the function f (n) = 5n logn+8n−200 is in the setO(n logn) using

the constants c = 13 and n0 = 2.

There are a number of useful shortcuts when using asymptotic notation. First:

O(nc1) ⊂O(nc2) ,

for any c1 < c2. Second: For any constants a,b,c > 0,

O(a) ⊂O(logn) ⊂O(nb) ⊂O(cn) .

These inclusion relations can be multiplied by any positive value, and they still hold. For

example, multiplying by n yields:

O(n) ⊂O(n logn) ⊂O(n1+b) ⊂O(ncn) .

Continuing in a long and distinguished tradition, we will abuse this notation by

writing things like f1(n) = O(f (n)) when what we really mean is f1(n) ∈ O(f (n)). We

will also make statements like “the running time of this operation is O(f (n))” when this

statement should be “the running time of this operation is a member of O(f (n)).” These

shortcuts are mainly to avoid awkward language and to make it easier to use asymptotic

notation within strings of equations.

A particularly strange example of this comes when we write statements like

T (n) = 2logn+O(1) .

11

1. Introduction 1.2. Mathematical Background

Again, this would be more correctly written as

T (n) ≤ 2logn+ [some member of O(1)] .

The expression O(1) also brings up another issue. Since there is no variable in this

expression, it may not be clear which variable is getting arbitrarily large. Without context,

there is no way to tell. In the example above, since the only variable in the rest of the

equation is n, we can assume that this should be read as T (n) = 2logn +O(f (n)), where

f (n) = 1.

Big-Oh notation is not new or unique to computer science. It was used by number

theorist Paul Bachmann as early as 1894, but it is immensely useful in describing the

running times of computer algorithms. Consider a piece of code like the following:
Simple

void snippet() {
for (int i = 0; i < n; i++)

a[i] = i;
}

One execution of this method involves

• 1 assignment (inti = 0),

• n+ 1 comparisons (i < n),

• n increments (i+ +),

• n array offset calculations (a[i]), and

• n indirect assignments (a[i] = i).

So we could write this running time as

T (n) = a+ b(n+ 1) + cn+ dn+ en ,

where a, b, c, d, and e are constants that depend on the the machine running the code

and represent the time to perform assignments, comparisons, increment operations, array

offset calculations, and indirect assignments, respectively. If this is the expression for the

running time of two lines of code, then clearly this kind of analysis will not be tractable to

complicated code or algorithms. Using big-Oh notation, the running time simplifies down

to

T (n) =O(n) .

12

1. Introduction 1.2. Mathematical Background

Not only is this more compact, but it also gives nearly as much information. The fact that

the running time depends on the constants a, b, c, d, and e in the above example means

that, in general, it will not be possible to compare two running times to know which is

faster without knowing the values of these constants. Even if we go through the effort of

determining these constants (say, through timing tests) then our conclusion will only be

valid for the machine we run our tests on.

Big-Oh notation allows us to reason at a much higher level, making it possible

to analyze much more complicated functions. If two algorithms have the same big-Oh

running time, then we won’t know which is faster, and there may not be a clear winner.

One may be faster on one machine and the other may be faster on a different machine.

However, if the two algorithms have a demonstrably different big-Oh running time, then

we can be certain that the one with the smaller running time will be faster for large enough

values of n.

An example of how big-Oh notation allows us to compare two different functions

is shown in Figure 1.5, which compares the rate of grown of f1(n) = 15n versus f2(n) =

2n logn. It might be that f1(n) is the running time of a complicated linear time algorithm

while f2(n) is the running time of a considerably simpler algorithm based on the divide-

and-conquer paradigm. This illustrates that, although f1(n) is greater than f2(n) for small

values of n, the opposite is true for large values of n. Eventually f1(n) wins out, by an

increasingly wide margin. Analysis using big-Oh notation told us that this would happen,

since O(n) ⊂O(n logn).

In a few cases, we will use asymptotic notation on functions with more than one

variable. There seems to be no standard for this, but for our purposes, the following

definition is sufficient:

O(f (n1, . . . ,nk)) =



g(n1, . . . ,nk) : there exists c > 0, and z such that

g(n1, . . . ,nk) ≤ c · f (n1, . . . ,nk)

for all n1, . . . ,nk such that g(n1, . . . ,nk) ≥ z


.

This definition captures the situation we really care about: when the arguments n1, . . . ,nk

make g take on large values. This agrees with the univariate definition of O(f (n)) when

f (n) is an increasing function of n. The reader should be warned that, although this works

for our purposes, other texts may treat multivariate functions and asymptotic notation

differently.

13

1. Introduction 1.2. Mathematical Background

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

f
(n

)

n

15n
2n logn

0

50000

100000

150000

200000

250000

300000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

f
(n

)

n

15n
2n logn

Figure 1.5: Plots of 15n versus 2n logn.

14

1. Introduction 1.2. Mathematical Background

1.2.4 Randomization and Probability

Some of the data structures presented in this book are randomized; they make random

choices that are independent of the data being stored in them or the operations being

performed on them. For this reason, performing the same set of operations more than

once using these structures could result in different running times. When analyzing these

data structures we are interested in their average or expected running times.

Formally, the running time of an operation on a randomized data structure is a

random variable and we want to study its expected value. For a discrete random variable X

taking on values in some countable universe U , the expected value of X, denoted by E[X],

is given the by the formula

E[X] =
∑

x∈U
x ·Pr{X = x} .

Here Pr{E} denotes the probability that the event E occurs. In all the examples in this

book, these probabilities are only with respect to whatever random choices are made by

the randomized data structure; there is no assumption that the data stored in the structure

is random or that the sequence of operations performed on the data structure is random.

One of the most important properties of expected values is linearity of expectation:

For any two random variables X and Y ,

E[X +Y] = E[X] + E[Y] .

More generally, for any random variables X1, . . . ,Xk ,

E



k∑

i=1

Xk


 =

k∑

i=1

E[Xi] .

Linearity of expectation allows us to break down complicated random variables (like the

left hand sides of the above equations) into sums of simpler random variables (the right

hand sides).

A useful trick, that we will use repeatedly, is that of defining indicator random

variables. These binary variables are useful when we want to count something and are best

illustrated by an example. Suppose we toss a fair coin k times and we want to know the

expected number of times the coin comes up heads. Intuitively, we know the answer is

15

1. Introduction 1.2. Mathematical Background

k/2, but if we try to prove it using the definition of expected value, we get

E[X] =
k∑

i=0

i ·Pr{X = i}

=
k∑

i=0

i ·
(
k
i

)
/2k

= k ·
k−1∑

i=0

(
k − 1
i

)
/2k

= k/2 .

This requires that we know enough to calculate that Pr{X = i} =
(k
i

)
/2k , that we know the

binomial identity i
(k
i

)
= k

(k−1
i

)
, and that we know the binomial identity

∑k
i=0

(k
i

)
= 2k .

Using indicator variables and linearity of expectation makes things much easier:

For each i ∈ {1, . . . , k}, define the indicator random variable

Ii =


1 if the ith coin toss is heads

0 otherwise.

Then

E[Ii] = (1/2)1 + (1/2)0 = 1/2 .

Now, X =
∑k
i=1 Ii , so

E[X] = E



k∑

i=1

Ii




=
k∑

i=1

E[Ii]

=
k∑

i=1

1/2

= k/2 .

This is a bit more long-winded, but doesn’t require that we know any magical identities

or compute any non-trivial probabilities. Even better: It agrees with the intuition that

we expect half the coins to come up heads precisely because each individual coin has

probability 1/2 of coming up heads.

16

1. Introduction 1.3. The Model of Computation

1.3 The Model of Computation

In this book, we will analyze the theoretical running times of operations on the data struc-

tures we study. To do this precisely, we need a mathematical model of computation. For

this, we use the w-bit word-RAM model. RAM stands for Random Access Machine. In this

model, we have access to a random access memory consisting of cells, each of which stores

a w-bit word. This implies a memory cell can represent, for example, any integer in the set

{0, . . . ,2w − 1}.
In the word-RAM model, basic operations on words take constant time. This in-

cludes arithmetic operations (+, −, ∗, / , %), comparisons (<, >, =, ≤, ≥), and bitwise boolean

operations (bitwise-AND, OR, and exclusive-OR).

Any cell can be read or written in constant time. Our computer’s memory is man-

aged by a memory management system from which we can allocate or deallocate a block

of memory of any size we like. Allocating a block of memory of size k takes O(k) time and

returns a reference to the newly-allocated memory block. This reference is small enough

to be represented by a single word.

The word-size, w, is a very important parameter of this model. The only assumption

we will make on w is that it is at least w ≥ logn, where n is the number of elements stored

in any of our data structures. This is a fairly modest assumption, since otherwise a word

is not even big enough to count the number of elements stored in the data structure.

Space is measured in words so that, when we talk about the amount of space used

by a data structure, we are referring to the number of words of memory used by the struc-

ture. All our data structures store values of a generic type T and we assume an element

of type T occupies one word of memory. (In reality, we are storing references to objects of

type T, and these references occupy only one word of memory.)

The w-bit word-RAM model is a fairly close match for the (32-bit) Java Virtual

Machine (JVM) when w = 32. The data structures presented in this book don’t use any

special tricks that are not implementable on the JVM and most other architectures.

1.4 Correctness, Time Complexity, and Space Complexity

When studying the performance of a data structure, there are three things that matter

most:

Correctness: The data structure should correctly implement its interface.

Time complexity: The running times of operations on the data structure should be as

17

1. Introduction 1.4. Correctness, Time Complexity, and Space Complexity

small as possible.

Space complexity: The data structure should use as little memory as possible.

In this introductory text, we will take correctness as a given; we won’t consider data

structures that give incorrect answers to queries or that don’t properly perform updates.

We will, however, see data structures that make an extra effort to keep space usage to a

minimum. This won’t usually affect the (asymptotic) running times of operations, but can

make the data structures a little slower in practice.

When studying running times in the context of data structure we tend to come

across three different kinds of running time guarantees:

Worst-case running times: These are the strongest kind of running time guarantees. If

a data structure operation has a worst-case running time of f (n), then one of these

operations never takes longer than f (n) time.

Amortized running times: If we say that the amortized running time of an operation in a

data structure is f (n), this means that the cost of a typical operation is at most f (n).

More precisely, if a data structure has an amortized running time of f (n), then a

sequence of m operations takes at most mf (n) time. Some individual operations may

take more than f (n) time but the average, over the entire sequence of operations, is

at most f (n).

Expected running times: If we say that the expected running time of an operation on a

data structure is f (n), this means that the actual running time is a random variable

(see Section 1.2.4) and the expected value of this random variable is at most f (n). The

randomization here is with respect to random choices made by the data structure.

To understand the difference between worst-case, amortized, and expected running

times, it helps to consider a financial example. Consider the cost buying a house.

Worst-case versus amortized cost: Suppose that a home costs $120 000. In order to

buy this home, we might get a 120 month (10 year) mortgage with monthly payments of

$1 200 per month. In this case, the worst-case monthly cost of paying this mortgage is

$1 200 per month.

If we have enough cash on hand, we might choose to buy the house outright, with

one payment of $120 000. In this case, over a period of 10 years, the amortized monthly

18

1. Introduction 1.5. Code Samples

cost of buying this house is

$120000/120 months = $1000 per month .

This is much less than the $1 200 per month we would have to pay if we took out a mort-

gage.

Worst-case versus expected cost: Next, consider the issue of fire insurance on our

$120 000 home. By studying hundreds of thousands of cases, insurance companies have

determined that the expected amount of fire damage caused to a home like ours is $10 per

month. This is a very small number, since most homes never have fires, a few homes may

have some small fires that cause a bit of smoke damage, and a tiny number of homes burn

right to their foundations. Based on this information, the insurance company charges $15

per month for fire insurance.

Now it’s decision time. Should we pay the $15 worst-case monthly cost for fire

insurance or should we gamble and self-insure at an expected cost of $10 per month?

Clearly, the $10 per month cost less in expectation, but we have to be able to accept the

possibility that actual cost may be much higher. In the unlikely event that the entire house

burns down, the actual cost will be $120 000.

These financial examples also offer insight into why we sometimes settle for an

amortized or expected running time over a worst-case running time. It is often possible to

get a lower expected or amortized running time than worst-case running time. At the very

least, it is very often possible to get a much simpler data structure if one is willing to settle

for amortized or expected running times.

1.5 Code Samples

The code samples in this book are written in the Java programming language. However

to make the book accessible even to readers not familiar with all of Java’s constructs and

keywords, the code samples have been simplified. For example, a reader won’t find any of

the keywords public, protected, private, or static. A reader also won’t find much dis-

cussion about class hierarchies. Which interfaces a particular class implements or which

class it extends, if relevant to the discussion, will be clear from the accompanying text.

These conventions should make most of the code samples understandable by any-

one with a background in any of the languages from the ALGOL tradition, including B,

C, C++, C#, D, Java, JavaScript, and so on. Readers who want the full details of all imple-

mentations are encouraged to look at the Java source code that accompanies this book.

19

1. Introduction 1.6. List of Data Structures

List implementations

get(i)/set(i,x) add(i,x)/remove(i)

ArrayStack O(1) O(1 + n− i)A § 2.1

ArrayDeque O(1) O(1 + min{i,n− i})A § 2.4

DualArrayDeque O(1) O(1 + min{i,n− i})A § 2.5

RootishArrayStack O(1) O(1 + n− i)A § 2.6

DLList O(1 + min{i,n− i}) O(1 + min{i,n− i}) § 3.2

SEList O(1 + min{i,n− i}/b) O(b+ min{i,n− i}/b)A § 3.3

SkiplistList O(logn)E O(logn)E § 4.3

USet implementations

find(x) add(x)/remove(x)

ChainedHashTable O(1)E O(1)A,E § 5.1

LinearHashTable O(1)E O(1)A,E § 5.2

A Denotes an amortized running time.
E Denotes an expected running time.

Table 1.1: Summary of List and USet implementations.

This book mixes mathematical analysis of running times with Java source code for

the algorithms being analyzed. This means that some equations contain variables also

found in the source code. These variables are typeset consistently, both within the source

code and within equations. The most common such variable is the variable n that, without

exception, always refers to the number of items currently stored in the data structure.

1.6 List of Data Structures

Tables 1.1 and 1.2 summarizes the performance of data structures in this book that im-

plement each of the interfaces, List, USet, and SSet, described in Section 1.1. Figure 1.6

shows the dependencies between various chapters in this book. A dashed arrow indicates

only a weak-dependency, in which only a small part of the chapter depends on a previous

chapter or only the main results of the previous chapter.

20

1. Introduction 1.6. List of Data Structures

SSet implementations

find(x) add(x)/remove(x)

SkiplistSSet O(logn)E O(logn)E § 4.2

Treap O(logn)E O(logn)E § 7.2

ScapegoatTree O(logn) O(logn)A § 8.1

RedBlackTree O(logn) O(logn) § 9.2

BinaryTrieI O(w) O(w) § 13.1

XFastTrieI O(logw)A,E O(w)A,E § 13.2

YFastTrieI O(logw)A,E O(logw)A,E § 13.3

BTree O(logn) O(B+ logn)A § 14.2

BTreeX O(logBn) O(logBn) § 14.2

(Priority) Queue implementations

findMin() add(x)/remove()

BinaryHeap O(1) O(logn)A § 10.1

MeldableHeap O(1) O(logn)E § 10.2

I This structure can only store w-bit integer data.
X This denotes the running time in the external-memory

model; see Chapter 14.

Table 1.2: Summary of SSet and priority Queue implementations.

21

1. Introduction 1.6. List of Data Structures

11.1.2. Quicksort

1. Introduction

6. Binary trees

3. Linked lists

3.3 Space-efficient linked lists

2. Array-based lists

7. Random binary search trees

9. Red-black trees

10. Heaps

12. Graphs

13. Data structures for integers

8. Scapegoat trees

11. Sorting algorithms

11.1.3. Heapsort

4. Skiplists

5. Hash tables

14. External-memory searching

Figure 1.6: The dependencies between chapters in this book.

22

1. Introduction 1.7. Discussion and Exercises

1.7 Discussion and Exercises

The List, USet, and SSet interfaces described in Section 1.1 are influenced by the Java Col-

lections Framework [54]. These are essentially simplified versions of the List, Set/Map,

and SortedSet/SortedMap interfaces found in the Java Collections Framework. Indeed,

the accompanying source code includes wrapper classes for making USet and SSet imple-

mentations into Set, Map, SortedSet, and SortedMap implementations.

For a superb (and free) treatment of the mathematics discussed in this chapter, in-

cluding asymptotic notation, logarithms, factorials, Stirling’s approximation, basic prob-

ability, and lots more, see the textbook by Leyman, Leighton, and Meyer [50]. For a gen-

tle calculus text that includes formal definitions of exponentials and logarithms, see the

(freely available) classic text by Thompson [71].

For more information on basic probability, especially as it relates to computer sci-

ence, see the textbook by Ross [65]. Another good reference, that covers both asymptotic

notation and probability, is the textbook by Graham, Knuth, and Patashnik [37].

Readers wanting to brush up on their Java programming can find many Java tuto-

rials online [56].

Exercise 1.1. This exercise is designed to help get the reader familiar with choosing the

right data structure for the right problem. If implemented, the parts of this exercise should

be done by making use of an implementation of the relevant interface (Stack, Queue,

Deque, USet, or SSet) provided by the Java Collections Framework.

Solve the following problems by reading a text file one line at a time and perform-

ing operations on each line in the appropriate data structure(s). Your implementations

should be fast enough that even files containing a million lines can be processed in a few

seconds.

1. Read the input one line at a time and then write the lines out in reverse order, so that

the last input line is printed first, then the second last input line, and so on.

2. Read the first 50 lines of input and then write them out in reverse order. Read the

next 50 lines and then write them out in reverse order. Do this until there are no

more lines left to read, at which point any remaining lines should be output in re-

verse order.

In other words, your output will start with the 50th line, then the 49th, then the 48th,

and so on down to the first line. This will be followed by the 100th line, followed by

23

1. Introduction 1.7. Discussion and Exercises

the 99th, and so on down to the 51st line. And so on.

Your code should never have to store more than 50 lines at any given time.

3. Read the input one line at a time. At any point after reading the first 42 lines, if some

line is blank (i.e., a string of length 0) then output the line that occured 42 lines prior

to that one. For example, if Line 242 is blank, then your program should output line

200. This program should be implemented so that it never stores more than 43 lines

of the input at any given time.

4. Read the input one line at a time and write each line to the output if it is not a

duplicate of some previous input line. Take special care so that a file with a lot of

duplicate lines does not use more memory than what is required for the number of

unique lines.

5. Read the input one line at a time and write each line to the output only if you have

already read this line before. (The end result is that you remove the first occurrence

of each line.) Take special care so that a file with a lot of duplicate lines does not use

more memory than what is required for the number of unique lines.

6. Read the entire input one line at a time. Then output all lines sorted by length, with

the shortest lines first. In the case where two lines have the same length, resolve their

order using the usual “sorted order.” Duplicate lines should be printed only once.

7. Do the same as the previous question except that duplicate lines should be printed

the same number of times that they appear in the input.

8. Read the entire input one line at a time and then output the even numbered lines

(starting with the first line, line 0) followed by the odd-numbered lines.

9. Read the entire input one line at a time and randomly permute the lines before out-

putting them. To be clear: You should not modify the contents of any line. Instead,

the same collection of lines should be printed, but in a random order.

Exercise 1.2. A Dyck word is a sequence of +1’s and -1’s with the property that sum of any

prefix of the sequence is never negative. Describe any relationship between Dyck words

and Stack push(x) and pop() operations.

Exercise 1.3. A matched string is a sequence of {, (, and [characters that are properly

matched. For example, “{{()[]}}” is a matched string, but this “{{()]}” is not, since the second

24

1. Introduction 1.7. Discussion and Exercises

{ is matched with a]. Show how to use a stack so that, given a string of length n, you can

determine if it is a matched string in O(n) time.

Exercise 1.4. Suppose you have a Stack, s, that supports only the push(x) and pop() oper-

ations. Show how, using only a FIFO Queue, q, you can reverse the order of all elements in

s.

Exercise 1.5. Using a USet, implement a Bag. A Bag is like a USet—it supports the

add(x), remove(x) and find(x) methods—but it allows duplicate elements to be stored.

The find(x) operation in a Bag returns some element (if any) that is equal to x. In addi-

tion, a Bag supports the findAll(x) operation that returns a list of all elements in the Bag

that are equal to x.

Exercise 1.6. From scratch, write and test implementations of the List, USet and SSet

interfaces. These do not have to be efficient. They can be used later to test the correctness

and performance of more efficient implementations. (The easiest way to do this is to store

the elements in an array.)

Exercise 1.7. Work to improve the performance of your implementations from the previ-

ous question using any tricks you can think of. Experiment and think about how you could

improve the performance of add(i,x) and remove(i) in your List implementation. Think

about how you could improve the performance of the find(x) operation in your USet and

SSet implementations. This exercise is designed to give you a feel for how difficult it can

be to obtain efficient implementations of these interfaces.

25

1. Introduction 1.7. Discussion and Exercises

26

Chapter 2

Array-Based Lists

In this chapter, we study implementations of the List and Queue interfaces where the

underlying data is stored in an array, called the backing array. The following table summa-

rizes the running times of operations for the data structures presented in this chapter:

get(i)/set(i,x) add(i,x)/remove(i)

ArrayStack O(1) O(n− i)

ArrayDeque O(1) O(min{i,n− i})
DualArrayDeque O(1) O(min{i,n− i})
RootishArrayStack O(1) O(n− i)

Data structures that work by storing data in a single array have many advantages

and limitations in common:

• Arrays offer constant time access to any value in the array. This is what allows get(i)

and set(i,x) to run in constant time.

• Arrays are not very dynamic. Adding or removing an element near the middle of a

list means that a large number of elements in the array need to be shifted to make

room for the newly added element or to fill in the gap created by the deleted element.

This is why the operations add(i,x) and remove(i) have running times that depend

on n and i.

• Arrays cannot expand or shrink. When the number of elements in the data struc-

ture exceeds the size of the backing array, a new array needs to be allocated and the

data from the old array needs to be copied into the new array. This is an expensive

operation.

27

2. Array-Based Lists 2.1. ArrayStack: Fast Stack Operations Using an Array

The third point is important. The running times cited in the table above do not include the

cost of growing and shrinking the backing array. We will see that, if carefully managed,

the cost of growing and shrinking the backing array does not add much to the cost of an

average operation. More precisely, if we start with an empty data structure, and perform

any sequence of m add(i,x) or remove(i) operations, then the total cost of growing and

shrinking the backing array, over the entire sequence of m operations is O(m). Although

some individual operations are more expensive, the amortized cost, when amortized over

all m operations, is only O(1) per operation.

2.1 ArrayStack: Fast Stack Operations Using an Array

An ArrayStack implements the list interface using an array a, called the backing array. The

list element with index i is stored in a[i]. At most times, a is larger than strictly necessary,

so an integer n is used to keep track of the number of elements actually stored in a. In this

way, the list elements are stored in a[0],. . . ,a[n− 1] and, at all times, a.length ≥ n.

ArrayStack
T[] a;
int n;
int size() {
return n;

}

2.1.1 The Basics

Accessing and modifying the elements of an ArrayStack using get(i) and set(i,x) is triv-

ial. After performing any necessary bounds-checking we simply return or set, respectively,

a[i].

ArrayStack
T get(int i) {
return a[i];

}
T set(int i, T x) {
T y = a[i];
a[i] = x;
return y;

}

The operations of adding and removing elements from an ArrayStack are illus-

trated in Figure 2.1. To implement the add(i,x) operation, we first check if a is already

28

2. Array-Based Lists 2.1. ArrayStack: Fast Stack Operations Using an Array

add(2,e)

add(5,r)

add(5,e)∗
b r e de r

b r e de r

b r e de e r

b r e ee r

b r e re

b r ee

b r ee

remove(4)

remove(4)

remove(4)∗

0 1 2 3 4 5 6 7 8 9 10 11

b r ei

set(2,i)

b r e de

b r e d

Figure 2.1: A sequence of add(i,x) and remove(i) operations on an ArrayStack. Arrows

denote elements being copied. Operations that result in a call to resize() are marked with

an asterisk.

full. If so, we call the method resize() to increase the size of a. How resize() is im-

plemented will be discussed later. For now, it is sufficient to know that, after a call to

resize(), we can be sure that a.length > n. With this out of the way, we now shift the

elements a[i], . . . ,a[n− 1] right by one position to make room for x, set a[i] equal to x, and

increment n.

ArrayStack
void add(int i, T x) {
if (n + 1 > a.length) resize();
for (int j = n; j > i; j--)

a[j] = a[j-1];
a[i] = x;
n++;

}

29

2. Array-Based Lists 2.1. ArrayStack: Fast Stack Operations Using an Array

If we ignore the cost of the potential call to resize(), the cost of the add(i,x) operation is

proportional to the number of elements we have to shift to make room for x. Therefore the

cost of this operation (ignoring the cost of resizing a) is O(n− i+ 1).

Implementing the remove(i) operation is similar. We shift the elements a[i+ 1], . . . ,a[n− 1]

left by one position (overwriting a[i]) and decrease the value of n. After doing this, we

check if n is getting much smaller than a.length by checking if a.length ≥ 3n. If so, we

call resize() to reduce the size of a.

ArrayStack
T remove(int i) {
T x = a[i];
for (int j = i; j < n-1; j++)

a[j] = a[j+1];
n--;
if (a.length >= 3*n) resize();
return x;

}

If we ignore the cost of the resize() method, the cost of a remove(i) operation is propor-

tional to the number of elements we shift, which is O(n− i).

2.1.2 Growing and Shrinking

The resize() method is fairly straightforward; it allocates a new array b whose size is 2n

and copies the n elements of a into the first n positions in b, and then sets a to b. Thus,

after a call to resize(), a.length = 2n.

ArrayStack
void resize() {
T[] b = newArray(Math.max(n*2,1));
for (int i = 0; i < n; i++) {

b[i] = a[i];
}
a = b;

}

Analyzing the actual cost of the resize() operation is easy. It allocates an array b

of size 2n and copies the n elements of a into b. This takes O(n) time.

The running time analysis from the previous section ignored the cost of calls to

resize(). In this section we analyze this cost using a technique known as amortized anal-

ysis. This technique does not try to determine the cost of resizing during each individual

30

2. Array-Based Lists 2.1. ArrayStack: Fast Stack Operations Using an Array

add(i,x) and remove(i) operation. Instead, it considers the cost of all calls to resize()

during a sequence of m calls to add(i,x) or remove(i). In particular, we will show:

Lemma 2.1. If an empty ArrayList is created and any sequence of m ≥ 1 calls to add(i,x) and

remove(i) are performed, then the total time spent during all calls to resize() is O(m).

Proof. We will show that anytime resize() is called, the number of calls to add or remove

since the last call to resize() is at least n/2 − 1. Therefore, if ni denotes the value of n

during the ith call to resize() and r denotes the number of calls to resize(), then the total

number of calls to add(i,x) or remove(i) is at least

r∑

i=1

(ni/2− 1) ≤m ,

which is equivalent to
r∑

i=1

ni ≤ 2m+ 2r .

On the other hand, the total time spent during all calls to resize() is

r∑

i=1

O(ni) ≤O(m+ r) =O(m) ,

since r is not more than m. All that remains is to show that the number of calls to add(i,x)

or remove(i) between the (i − 1)th and the ith call to resize() is at least ni/2.

There are two cases to consider. In the first case, resize() is being called by

add(i,x) because the backing array a is full, i.e., a.length = n = ni . Consider the previ-

ous call to resize(): After this previous call, the size of a was a.length, but the number

of elements stored in a was at most a.length/2 = ni/2. But now the number of elements

stored in a is ni = a.length, so there must have been at least ni/2 calls to add(i,x) since the

previous call to resize().

The second case to consider is when resize() is being called by remove(i) because

a.length ≥ 3n = 3ni . Again, after the previous call to resize() the number of elements

stored in a was at least a.length/2− 1.1 Now there are ni ≤ a.length/3 elements stored in

a. Therefore, the number of remove(i) operations since the last call to resize() is at least

a.length/2− 1− a.length/3 = a.length/6− 1 = (a.length/3)/2− 1 ≥ ni/2− 1 .

1The − 1 in this formula accounts for the special case that occurs when n = 0 and a.length = 1.

31

2. Array-Based Lists 2.2. FastArrayStack: An Optimized ArrayStack

In either case, the number of calls to add(i,x) or remove(i) that occur between the (i −1)th

call to resize() and the ith call to resize() is at least ni/2− 1, as required to complete the

proof.

2.1.3 Summary

The following theorem summarizes the performance of an ArrayStack:

Theorem 2.1. An ArrayStack implements the List interface. Ignoring the cost of calls to

resize(), an ArrayStack supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.

Furthermore, beginning with an empty ArrayStack, any sequence ofm add(i,x) and remove(i)

operations results in a total of O(m) time spent during all calls to resize().

The ArrayStack is an efficient way to implement a Stack. In particular, we can

implement push(x) as add(n,x) and pop() as remove(n− 1), in which case these operations

will run in O(1) amortized time.

2.2 FastArrayStack: An Optimized ArrayStack

Much of the work done by an ArrayStack involves shifting (by add(i,x) and remove(i))

and copying (by resize()) of data. In the implementations shown above, this was done

using for loops. It turns out that many programming environments have specific func-

tions that are very efficient at copying and moving blocks of data. In the C program-

ming language, there are the memcpy(d,s,n) and memmove(d,s,n) functions. In C++ there is

the std :: copy(a0,a1,b) and algorithm. In Java there is the System.arraycopy(s,i,d,j,n)

method.
FastArrayStack

void resize() {
T[] b = newArray(Math.max(2*n,1));
System.arraycopy(a, 0, b, 0, n);
a = b;

}
void add(int i, T x) {
if (n + 1 > a.length) resize();
System.arraycopy(a, i, a, i+1, n-i);
a[i] = x;
n++;

32

2. Array-Based Lists 2.3. ArrayQueue: An Array-Based Queue

}
T remove(int i) {
T x = a[i];
System.arraycopy(a, i+1, a, i, n-i-1);
n--;
if (a.length >= 3*n) resize();
return x;

}

These functions are usually highly optimized and may even use special machine

instructions that can do this copying much faster than we could do using a for loop.

Although using these functions does not asymptotically decrease the running times, it

can still be a worthwhile optimization. In the Java implementations here, the use of

System.arraycopy(s,i,d,j,n) resulted in speedups of a factor between 2 and 3, depending

on the types of operations performed. Your mileage may vary.

2.3 ArrayQueue: An Array-Based Queue

In this section, we present the ArrayQueue data structure, which implements a FIFO (first-

in-first-out) queue; elements are removed (using the remove() operation) from the queue

in the same order they are added (using the add(x) operation).

Notice that an ArrayStack is a poor choice for an implementation of a FIFO queue.

The reason is that we must choose one end of the list to add to and then remove from the

other end. One of the two operations must work on the head of the list, which involves

calling add(i,x) or remove(i) with a value of i = 0. This gives a running time proportional

to n.

To obtain an efficient array-based implementation of a queue, we first notice that

the problem would be easy if we had an infinite array a. We could maintain one index j

that keeps track of the next element to remove and an integer n that counts the number of

elements in the queue. The queue elements would always be stored in

a[j],a[j+ 1], . . . ,a[j+ n− 1] .

Initially, both j and n would be set to 0. To add an element, we would place it in a[j+ n]

and increment n. To remove an element, we would remove it from a[j], increment j, and

decrement n.

Of course, the problem with this solution is that it requires an infinite array. An

ArrayQueue simulates this by using a finite array a and modular arithmetic. This is the kind

33

2. Array-Based Lists 2.3. ArrayQueue: An Array-Based Queue

of arithmetic used when we are talking about the time of day. For example 10 o’clock plus

5 hours gives 3 o’clock. Formally, we say that

10 + 5 = 15 ≡ 3 (mod 12) .

We read the latter part of this equation as “15 is congruent to 3 modulo 12.” We can also

treat mod as a binary operator, so that

15 mod 12 = 3 .

More generally, for an integer a and positive integer m, a mod m is the unique

integer r ∈ {0, . . . ,m−1} such that a = r +km for some integer k. Less formally, the value r is

the remainder we get when we divide a by m. In many programming languages, including

Java, the mod operator is represented using the % symbol.2

Modular arithmetic is useful for simulating an infinite array, since i mod a.length

always gives a value in the range 0, . . . ,a.length− 1. Using modular arithmetic we can store

the queue elements at array locations

a[j%a.length],a[(j+ 1)%a.length], . . . ,a[(j+ n− 1)%a.length] .

This treats a like a circular array in which array indices exceeding a.length − 1 “wrap

around” to the beginning of the array.

The only remaining thing to worry about is taking care that the number of elements

in the ArrayQueue does not exceed the size of a.
ArrayQueue

T[] a;
int j;
int n;

A sequence of add(x) and remove() operations on an ArrayQueue is illustrated in

Figure 2.2. To implement add(x), we first check if a is full and, if necessary, call resize()

to increase the size of a. Next, we store x in a[(j+ n)%a.length] and increment n.
ArrayQueue

boolean add(T x) {
if (n + 1 > a.length) resize();
a[(j+n) % a.length] = x;
n++;
return true;

}

2This is sometimes referred to as the brain-dead mod operator since it does not correctly implement the

mathematical mod operator when the first argument is negative.

34

2. Array-Based Lists 2.3. ArrayQueue: An Array-Based Queue

a b

b ca

add(d)

add(e)

remove()

e b ca d

e b c d

e f b c d

b c e fd

add(g)

add(h)∗

0 1 2 3 4 5 6 7 8 9 10 11

c

d

e f b c dg

add(f)

g

b c e fd g h

c e fd g h

remove()

j = 2,n = 3

j = 2,n = 4

j = 2,n = 5

j = 3,n = 4

j = 3,n = 5

j = 3,n = 6

j = 0,n = 7

j = 1,n = 6

j = 0,n = 6

Figure 2.2: A sequence of add(x) and remove(i) operations on an ArrayQueue. Arrows

denote elements being copied. Operations that result in a call to resize() are marked with

an asterisk.

35

2. Array-Based Lists 2.3. ArrayQueue: An Array-Based Queue

To implement remove() we first store a[j] so that we can return it later. Next,

we decrement n and increment j (modulo a.length) by setting j = (j + 1) mod a.length.

Finally, we return the stored value of a[j]. If necessary, we may call resize() to decrease

the size of a.

ArrayQueue
T remove() {
if (n == 0) throw new NoSuchElementException();
T x = a[j];
j = (j + 1) % a.length;
n--;
if (a.length >= 3*n) resize();
return x;

}

Finally, the resize() operation is very similar to the resize() operation of Array-

Stack. It allocates a new array b of size 2n and copies

a[j],a[(j+ 1)%a.length], . . . ,a[(j+ n− 1)%a.length]

onto

b[0],b[1], . . . ,b[n− 1]

and sets j = 0.

ArrayQueue
void resize() {
T[] b = newArray(Math.max(1,n*2));
for (int k = 0; k < n; k++)

b[k] = a[(j+k) % a.length];
a = b;
j = 0;

}

2.3.1 Summary

The following theorem summarizes the performance of the ArrayQueue data structure:

Theorem 2.2. An ArrayQueue implements the (FIFO) Queue interface. Ignoring the cost of

calls to resize(), an ArrayQueue supports the operations add(x) and remove() in O(1) time

per operation. Furthermore, beginning with an empty ArrayQueue, any sequence of m add(i,x)

and remove(i) operations results in a total of O(m) time spent during all calls to resize().

36

2. Array-Based Lists 2.4. ArrayDeque: Fast Deque Operations Using an Array

2.4 ArrayDeque: Fast Deque Operations Using an Array

The ArrayQueue from the previous section is a data structure for representing a sequence

that allows us to efficiently add to one end of the sequence and remove from the other end.

The ArrayDeque data structure allows for efficient addition and removal at both ends. This

structure implements the List interface using the same circular array technique used to

represent an ArrayQueue.

ArrayDeque
T[] a;
int j;
int n;

The get(i) and set(i,x) operations on an ArrayDeque are straightforward. They

get or set the array element a[(j+ i) mod a.length].

ArrayDeque
T get(int i) {
return a[(j+i)%a.length];

}
T set(int i, T x) {
T y = a[(j+i)%a.length];
a[(j+i)%a.length] = x;
return y;

}

The implementation of add(i,x) is a little more interesting. As usual, we first check

if a is full and, if necessary, call resize() to resize a. Remember that we want this operation

to be fast when i is small (close to 0) or when i is large (close to n). Therefore, we check

if i < n/2. If so, we shift the elements a[0], . . . ,a[i− 1] left by one position. Otherwise

(i ≥ n/2), we shift the elements a[i], . . . ,a[n− 1] right by one position. See Figure 2.3 for an

illustration of add(i,x) and remove(x) operations on an ArrayDeque.

ArrayDeque
void add(int i, T x) {
if (n+1 > a.length) resize();
if (i < n/2) { // shift a[0],..,a[i-1] left one position

j = (j == 0) ? a.length - 1 : j - 1; // (j-1) mod a.length
for (int k = 0; k <= i-1; k++)
a[(j+k)%a.length] = a[(j+k+1)%a.length];

} else { // shift a[i],..,a[n-1] right one position
for (int k = n; k > i; k--)
a[(j+k)%a.length] = a[(j+k-1)%a.length];

37

2. Array-Based Lists 2.4. ArrayDeque: Fast Deque Operations Using an Array

0 1 2 3 4 5 6 7 8 9 10 11

b c e fd g h

remove(2)

j = 0,n = 8 a

a b e fd g hj = 1,n = 7

add(4,x)

a b e xd f gj = 1,n = 8 h

add(3,y)

b d e xy f gj = 0,n = 9 ha

add(4,z)

d y e xz f gj = 11,n = 10 hb a

Figure 2.3: A sequence of add(i,x) and remove(i) operations on an ArrayDeque. Arrows

denote elements being copied.

}
a[(j+i)%a.length] = x;
n++;

}

By doing the shifting in this way, we guarantee that add(i,x) never has to shift more

than min{i,n−i} elements. Thus, the running time of the add(i,x) operation (ignoring the

cost of a resize() operation) is O(1 + min{i,n− i}).
The remove(i) operation is similar. It either shifts elements a[0], . . . ,a[i− 1] right

by one position or shifts the elements a[i+ 1], . . . ,a[n− 1] left by one position depending on

whether i < n/2. Again, this means that remove(i) never spends more thanO(1+min{i,n−
i}) time to shift elements.

ArrayDeque
T remove(int i) {
T x = a[(j+i)%a.length];
if (i < n/2) { // shift a[0],..,[i-1] right one position

for (int k = i; k > 0; k--)
a[(j+k)%a.length] = a[(j+k-1)%a.length];

j = (j + 1) % a.length;
} else { // shift a[i+1],..,a[n-1] left one position

for (int k = i; k < n-1; k++)
a[(j+k)%a.length] = a[(j+k+1)%a.length];

}
n--;
if (3*n < a.length) resize();

38

2. Array-Based Lists 2.5. DualArrayDeque: Building a Deque from Two Stacks

return x;
}

2.4.1 Summary

The following theorem summarizes the performance of the ArrayDeque data structure:

Theorem 2.3. An ArrayDeque implements the List interface. Ignoring the cost of calls to

resize(), an ArrayDeque supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty ArrayDeque, any sequence ofm add(i,x) and remove(i)

operations results in a total of O(m) time spent during all calls to resize().

2.5 DualArrayDeque: Building a Deque from Two Stacks

Next, we present another data structure, the DualArrayDeque that achieves the same per-

formance bounds as an ArrayDeque by using two ArrayStacks. Although the asymptotic

performance of the DualArrayDeque is no better than that of the ArrayDeque, it is still

worth studying since it offers a good example of how to make a sophisticated data struc-

ture by combining two simpler data structures.

A DualArrayDeque represents a list using two ArrayStacks. Recall that an Array-

Stack is fast when the operations on it modify elements near the end. A DualArrayDeque

places two ArrayStacks, called front and back, back-to-back so that operations are fast at

either end.
DualArrayDeque

List<T> front;
List<T> back;

A DualArrayDeque does not explicitly store the number, n, of elements it contains.

It doesn’t need to, since it contains n = front.size() +back.size() elements. Nevertheless,

when analyzing the DualArrayDeque we will still use n to denote the number of elements

it contains.
DualArrayDeque

int size() {
return front.size() + back.size();

}

39

2. Array-Based Lists 2.5. DualArrayDeque: Building a Deque from Two Stacks

The front ArrayStack contains list elements with indices 0, . . . ,front.size() − 1,

but stores them in reverse order. The back ArrayStack contains list elements with indices

front.size(), . . . ,size()− 1 in the normal order. In this way, get(i) and set(i,x) translate

into appropriate calls to get(i) or set(i,x) on either front or back, which take O(1) time

per operation.
DualArrayDeque

T get(int i) {
if (i < front.size()) {

return front.get(front.size()-i-1);
} else {

return back.get(i-front.size());
}

}
T set(int i, T x) {
if (i < front.size()) {

return front.set(front.size()-i-1, x);

} else {
return back.set(i-front.size(), x);

}
}

Note that, if an index i < front.size(), then it corresponds to the element of front

at position front.size()− i− 1, since the elements of front are stored in reverse order.

Adding and removing elements from a DualArrayDeque is illustrated in Figure 2.4.

The add(i,x) operation manipulates either front or back, as appropriate:
DualArrayDeque

void add(int i, T x) {
if (i < front.size()) {

front.add(front.size()-i, x);
} else {

back.add(i-front.size(), x);
}
balance();

}

The add(i,x) method performs rebalancing of the two ArrayStacks front and

back, by calling the balance() method. The implementation of balance() is described be-

low, but for now it is sufficient to know that balance() ensures that, unless size() < 2,

front.size() and back.size() do not differ by more than a factor of 3. In particular,

3 · front.size() ≥ back.size() and 3 · back.size() ≥ front.size().

40

2. Array-Based Lists 2.5. DualArrayDeque: Building a Deque from Two Stacks

0 1 2 3 4

b c d

front

a

back

01234

add(3,x)

b c xa d

add(4,y)

b c xa y d

remove(0)∗

b c x y d

b c x y d

Figure 2.4: A sequence of add(i,x) and remove(i) operations on a DualArrayDeque. Ar-

rows denote elements being copied. Operations that result in a rebalancing by balance()

are marked with an asterisk.

Next we analyze the cost of add(i,x), ignoring the cost of the balance() operation.

If i < front.size(), then add(i,x) becomes front.add(front.size()− i− 1,x). Since front

is an ArrayStack, the cost of this is

O(front.size()− (front.size()− i− 1) + 1) =O(i+ 1) . (2.1)

On the other hand, if i ≥ front.size(), then add(i,x) becomes back.add(i− front.size(),x).

The cost of this is

O(back.size()− (i− front.size()) + 1) =O(n− i+ 1) . (2.2)

Notice that the first case (2.1) occurs when i < n/4. The second case (2.2) occurs

when i ≥ 3n/4. When n/4 ≤ i < 3n/4, we can’t be sure whether the operation affects front

or back, but in either case, the operation takes O(n) = O(i) = O(n − i) time, since i ≥ n/4

and n− i > n/4. Summarizing the situation, we have

Running time of add(i,x) ≤



O(1 + i) if i < n/4

O(n) if n/4 ≤ i < 3n/4

O(1 + n− i) if i ≥ 3n/4

Thus, the running time of add(i,x) (ignoring the cost of the call to balance()) is O(1 +

min{i,n− i}).

41

2. Array-Based Lists 2.5. DualArrayDeque: Building a Deque from Two Stacks

The remove(i) operation, and its analysis, is similar to the add(i,x) operation.

DualArrayDeque
T remove(int i) {
T x;
if (i < front.size()) {

x = front.remove(front.size()-i-1);
} else {

x = back.remove(i-front.size());
}
balance();
return x;

}

2.5.1 Balancing

Finally, we study the balance() operation performed by add(i,x) and remove(i). This

operation is used to ensure that neither front nor back gets too big (or too small). It

ensures that, unless there are fewer than 2 elements, each of front and back contain at

least n/4 elements. If this is not the case, then it moves elements between them so that

front and back contain exactly bn/2c elements and dn/2e elements, respectively.

DualArrayDeque
void balance() {
int n = size();
if (3*front.size() < back.size()) {

int s = n/2 - front.size();
List<T> l1 = newStack();
List<T> l2 = newStack();
l1.addAll(back.subList(0,s));
Collections.reverse(l1);
l1.addAll(front);
l2.addAll(back.subList(s, back.size()));
front = l1;
back = l2;

} else if (3*back.size() < front.size()) {
int s = front.size() - n/2;
List<T> l1 = newStack();
List<T> l2 = newStack();
l1.addAll(front.subList(s, front.size()));
l2.addAll(front.subList(0, s));
Collections.reverse(l2);
l2.addAll(back);
front = l1;
back = l2;

42

2. Array-Based Lists 2.5. DualArrayDeque: Building a Deque from Two Stacks

}
}

There is not much to analyze. If the balance() operation does rebalancing, then it

moves O(n) elements and this takes O(n) time. This is bad, since balance() is called with

each call to add(i,x) and remove(i). However, the following lemma shows that, on average,

balance() only spends a constant amount of time per operation.

Lemma 2.2. If an empty DualArrayDeque is created and any sequence of m ≥ 1 calls to

add(i,x) and remove(i) are performed, then the total time spent during all calls to balance()

is O(m).

Proof. We will show that, if balance() is forced to shift elements, then the number of

add(i,x) and remove(i) operations since the last time balance() shifted any elements is at

least n/2 − 1. As in the proof of Lemma 2.1, this is sufficient to prove that the total time

spent by balance() is O(m).

We will perform our analysis using a technique knows as the potential method. De-

fine the potential, Φ , of the DualArrayDeque as the difference in size between front and

back:

Φ = |front.size()− back.size()| .

The interesting thing about this potential is that a call to add(i,x) or remove(i) that does

not do any balancing can increase the potential by at most 1.

Observe that, immediately after a call to balance() that shifts elements, the poten-

tial, Φ0, is at most 1, since

Φ0 = |bn/2c − dn/2e| ≤ 1 .

Consider the situation immediately before a call to balance() that shifts elements

and suppose, without loss of generality, that balance() is shifting elements because 3front.size() <

back.size(). Notice that, in this case,

n = front.size() + back.size()

< back.size()/3 + back.size()

=
4
3
back.size()

43

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

Furthermore, the potential at this point in time is

Φ1 = back.size()− front.size()

> back.size()− back.size()/3

=
2
3
back.size()

>
2
3
× 3

4
n

= n/2

Therefore, the number of calls to add(i,x) or remove(i) since the last time balance()

shifted elements is at least Φ1 −Φ0 > n/2− 1. This completes the proof.

2.5.2 Summary

The following theorem summarizes the performance of a DualArrayStack

Theorem 2.4. A DualArrayDeque implements the List interface. Ignoring the cost of calls to

resize() and balance(), a DualArrayDeque supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty DualArrayDeque, any sequence of m add(i,x) and

remove(i) operations results in a total of O(m) time spent during all calls to resize() and

balance().

2.6 RootishArrayStack: A Space-Efficient Array Stack

One of the drawbacks of all previous data structures in this chapter is that, because they

store their data in one or two arrays, and they avoid resizing these arrays too often, the

arrays are frequently not very full. For example, immediately after a resize() operation

on an ArrayStack, the backing array a is only half full. Even worse, there are times when

only 1/3 of a contains data.

In this section, we discuss a data structure, the RootishArrayStack, that addresses

the problem of wasted space. The RootishArrayStack stores n elements using O(
√
n)

arrays. In these arrays, at mostO(
√
n) array locations are unused at any time. All remaining

array locations are used to store data. Therefore, these data structures waste at mostO(
√
n)

space when storing n elements.

44

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

0

blocks

a b c d e f g h

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b x c d e f g

add(2,x)

h

remove(1)

a x c d e f g h

a x c d e f g

a x c d e f

remove(7)

remove(6)

Figure 2.5: A sequence of add(i,x) and remove(i) operations on a RootishArrayStack.

Arrows denote elements being copied.

A RootishArrayStack stores its elements in a list of r arrays called blocks that are

numbered 0,1, . . . ,r − 1. See Figure 2.5. Block b contains b + 1 elements. Therefore, all r

blocks contain a total of

1 + 2 + 3 + · · ·+ r = r(r+ 1)/2

elements. The above formula can be obtained as shown in Figure 2.6.

RootishArrayStack
List<T[]> blocks;
int n;

The elements of the list are laid out in the blocks as we might expect. The list

element with index 0 is stored in block 0, the elements with list indices 1 and 2 are stored

in block 1, the elements with list indices 3, 4, and 5 are stored in block 2, and so on. The

main problem we have to address is that of determining, given an index i, which block

contains i as well as the index corresponding to i within that block.

Determining the index of i within its block turns out to be easy. If index i is in

block b, then the number of elements in blocks 0, . . . ,b−1 is b(b+1)/2. Therefore, i is stored

at location

j = i− b(b+ 1)/2

45

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

r
...

. . .

...
. . .

. . .

r+1

Figure 2.6: The number of white squares is 1+2+3+ · · ·+r. The number of shaded squares

is the same. Together the white and shaded squares make a rectangle consisting of r(r+ 1)

squares.

within block b. Somewhat more challenging is the problem of determining the value of

b. The number of elements that have indices less than or equal to i is i+ 1. On the other

hand, the number of elements in blocks 0,. . . ,b is (b+1)(b+2)/2. Therefore, b is the smallest

integer such that

(b+ 1)(b+ 2)/2 ≥ i+ 1 .

We can rewrite this equation as

b2 + 3b− 2i ≥ 0 .

The corresponding quadratic equation b2+3b−2i = 0 has two solutions: b = (−3+
√

9 + 8i)/2

and b = (−3 −√9 + 8i)/2. The second solution makes no sense in our application since it

always gives a negative value. Therefore, we obtain the solution b = (−3 +
√

9 + 8i)/2. In

general, this solution is not an integer, but going back to our inequality, we want the small-

est integer b such that b ≥ (−3 +
√

9 + 8i)/2. This is simply

b =
⌈
(−3 +

√
9 + 8i)/2

⌉
.

RootishArrayStack
int i2b(int i) {
double db = (-3.0 + Math.sqrt(9 + 8*i)) / 2.0;
int b = (int)Math.ceil(db);
return b;

}

With this out of the way, the get(i) and set(i,x) methods are straightforward. We

first compute the appropriate block b and the appropriate index j within the block and

46

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

then perform the appropriate operation:

RootishArrayStack
T get(int i) {
int b = i2b(i);
int j = i - b*(b+1)/2;
return blocks.get(b)[j];

}
T set(int i, T x) {
int b = i2b(i);
int j = i - b*(b+1)/2;
T y = blocks.get(b)[j];
blocks.get(b)[j] = x;
return y;

}

If we use any of the data structures in this chapter for representing the blocks list,

then get(i) and set(i,x) will each run in constant time.

The add(i,x) method will, by now, look familiar. We first check if our data structure

is full, by checking if the number of blocks r is such that r(r+ 1)/2 = n and, if so, we call

grow() to add another block. With this done, we shift elements with indices i, . . . ,n − 1 to

the right by one position to make room for the new element with index i:

RootishArrayStack
void add(int i, T x) {
int r = blocks.size();
if (r*(r+1)/2 < n + 1) grow();
n++;
for (int j = n-1; j > i; j--)

set(j, get(j-1));
set(i, x);

}

The grow() method does what we expect. It adds a new block:

RootishArrayStack
void grow() {
blocks.add(newArray(blocks.size()+1));

}

Ignoring the cost of the grow() operation, the cost of an add(i,x) operation is dom-

inated by the cost of shifting and is therefore O(1 + n− i), just like an ArrayStack.

47

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

The remove(i) operation is similar to add(i,x). It shifts the elements with indices

i+ 1, . . . ,n left by one position and then, if there is more than one empty block, it calls the

shrink() method to remove all but one of the unused blocks:

RootishArrayStack
T remove(int i) {
T x = get(i);
for (int j = i; j < n-1; j++)

set(j, get(j+1));
n--;
int r = blocks.size();
if ((r-2)*(r-1)/2 >= n) shrink();
return x;

}

RootishArrayStack
void shrink() {
int r = blocks.size();
while (r > 0 && (r-2)*(r-1)/2 >= n) {

blocks.remove(blocks.size()-1);
r--;

}
}

Once again, ignoring the cost of the shrink() operation, the cost of a remove(i)

operation is dominated by the cost of shifting and is therefore O(n− i).

2.6.1 Analysis of Growing and Shrinking

The above analysis of add(i,x) and remove(i) does not account for the cost of grow() and

shrink(). Note that, unlike the ArrayStack.resize() operation, grow() and shrink() do not

do any copying of data. They only allocate or free an array of size r. In some environments,

this takes only constant time, while in others, it may require time proportional to r.

We note that, immediately after a call to grow() or shrink(), the situation is clear.

The final block is completely empty and all other blocks are completely full. Another

call to grow() or shrink() will not happen until at least r− 1 elements have been added or

removed. Therefore, even if grow() and shrink() takeO(r) time, this cost can be amortized

over at least r−1 add(i,x) or remove(i) operations, so that the amortized cost of grow() and

shrink() is O(1) per operation.

48

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

2.6.2 Space Usage

Next, we analyze the amount of extra space used by a RootishArrayStack. In particular,

we want to count any space used by a RootishArrayStack that is not an array element

currently used to hold a list element. We call all such space wasted space.

The remove(i) operation ensures that a RootishArrayStack never has more than

2 blocks that are not completely full. The number of blocks, r, used by a RootishArray-

Stack that stores n elements therefore satisfies

(r− 2)(r− 1) ≤ n .

Again, using the quadratic equation on this gives

r ≤ (3 +
√

1 + 4n)/2 =O(
√
n) .

The last two blocks have sizes r and r− 1, so the space wasted by these two blocks is at

most 2r−1 =O(
√
n). If we store the blocks in (for example) an ArrayList, then the amount

of space wasted by the List that stores those r blocks is alsoO(r) =O(
√
n). The other space

needed for storing n and other accounting information isO(1). Therefore, the total amount

of wasted space in a RootishArrayStack is O(
√
n).

Next, we argue that this space usage is optimal for any data structure that starts

out empty and can support the addition of one item at a time. More precisely, we will

show that, at some point during the addition of n items, the data structure is wasting an

amount of space at least in
√
n (though it may be only wasted for a moment).

Suppose we start with an empty data structure and we add n items one at a time.

At the end of this process, all n items are stored in the structure and they are distributed

among a collection of r memory blocks. If r ≥ √n, then the data structure must be using

r pointers (or references) to keep track of these r blocks, and this is wasted space. On the

other hand, if r <
√
n then, by the pigeonhole principle, some block must have size at least

n/r >
√
n. Consider the moment at which this block was first allocated. Immediately after

it was allocated, this block was empty, and was therefore wasting
√
n space. Therefore, at

some point in time during the insertion of n elements, the data structure was wasting
√
n

space.

2.6.3 Summary

The following theorem summarizes the performance of the RootishArrayStack data struc-

ture:

49

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

Theorem 2.5. A RootishArrayStack implements the List interface. Ignoring the cost of calls

to grow() and shrink(), a RootishArrayStack supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.

Furthermore, beginning with an empty RootishArrayStack, any sequence of m add(i,x) and

remove(i) operations results in a total ofO(m) time spent during all calls to grow() and shrink().

The space (measured in words)3 used by a RootishArrayStack that stores n elements

is n+O(
√
n).

2.6.4 Computing Square Roots

A reader who has had some exposure to models of computation may notice that the Rootish-

ArrayStack, as described above, does not fit into the usual word-RAM model of compu-

tation (Section 1.3) because it requires taking square roots. The square root operation is

generally not considered a basic operation and is therefore not usually part of the word-

RAM model.

In this section, we take time to show that the square root operation can be imple-

mented efficiently. In particular, we show that for any integer x ∈ {0, . . . ,n}, b√xc can be

computed in constant-time, after O(
√
n) preprocessing that creates two arrays of length

O(
√
n). The following lemma shows that we can reduce the problem of computing the

square root of x to the square root of a related value x′.

Lemma 2.3. Let x ≥ 1 and let x′ = x− a, where 0 ≤ a ≤ √x. Then
√
x′ ≥ √x− 1.

Proof. It suffices to show that √
x−√x ≥ √x− 1 .

Square both sides of this inequality to get

x−√x ≥ x− 2
√
x+ 1

and gather terms to get √
x ≥ 1

which is clearly true for any x ≥ 1.

3Recall Section 1.3 for a discussion of how memory is measured.

50

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

Start by restricting the problem a little, and assume that 2r ≤ x < 2r+1, so that

blogxc = r, i.e., x is an integer having r + 1 bits in its binary representation. We can take

x′ = x − (x mod 2br/2c). Now, x′ satisfies the conditions of Lemma 2.3, so
√
x − √x′ ≤ 1.

Furthermore, x′ has all of its lower-order br/2c bits equal to 0, so there are only

2r+1−br/2c ≤ 4 · 2r/2 ≤ 4
√
x

possible values of x′. This means that we can use an array, sqrttab, that stores the value

of b√x′c for each possible value of x′. A little more precisely, we have

sqrttab[i] =
⌊√
i2br/2c

⌋
.

In this way, sqrttab[i] is within 2 of
√
x for all x ∈ {i2br/2c, . . . , (i+1)2br/2c−1}. Stated another

way, the array entry s = sqrttab[x>>br/2c] is either equal to b√xc, b√xc − 1, or b√xc − 2.

From s we can determine the value of b√xc by incrementing s until (s+ 1)2 > x.
FastSqrt

int sqrt(int x, int r) {
int s = sqrtab[x>>r/2];
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

}

Now, this only works for x ∈ {2r, . . . ,2r+1 − 1} and sqrttab is a special table that

only works for a particular value of r = blogxc. To overcome this, we could compute blognc
different sqrttab arrays, one for each possible value of blogxc. The sizes of these tables

form an exponential sequence whose largest value is at most 4
√
n, so the total size of all

tables is O(
√
n).

However, it turns out that more than one sqrttab array is unnecessary; we only

need one sqrttab array for the value r = blognc. Any value x with logx = r′ < r can be

upgraded by multiplying x by 2r−r′ and using the equation

√
2r−r′x = 2(r−r′)/2√x .

The quantity 2r−r′x is in the range {2r, . . . ,2r+1 − 1} so we can look up its square root in

sqrttab. The following code implements this idea to compute b√xc for all non-negative

integers x in the range {0, . . . ,230 − 1} using an array, sqrttab, of size 216.
FastSqrt

int sqrt(int x) {
int rp = log(x);
int upgrade = ((r-rp)/2) * 2;

51

2. Array-Based Lists 2.6. RootishArrayStack: A Space-Efficient Array Stack

int xp = x << upgrade; // xp has r or r-1 bits
int s = sqrtab[xp>>(r/2)] >> (upgrade/2);
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

}

Something we have taken for granted thus far is the question of how to compute

r′ = blogxc. Again, this is a problem that can be solved with an array, logtab, of size

2r/2. In this case, the code is particularly simple, since blogxc is just the index of the

most significant 1 bit in the binary representation of x. This means that, for x > 2r/2, we

can right-shift the bits of x by r/2 positions before using it as an index into logtab. The

following code does this using an array logtab of size 216 to compute blogxc for all x in

the range {1, . . . ,232 − 1}
FastSqrt

int log(int x) {
if (x >= halfint)

return 16 + logtab[x>>>16];
return logtab[x];

}

Finally, for completeness, we include the following code that initializes logtab and

sqrttab:
FastSqrt

void inittabs() {
sqrtab = new int[1<<(r/2)];
logtab = new int[1<<(r/2)];
for (int d = 0; d < r/2; d++)

Arrays.fill(logtab, 1<<d, 2<<d, d);
int s = 1<<(r/4); // sqrt(2ˆ(r/2))
for (int i = 0; i < 1<<(r/2); i++) {

if ((s+1)*(s+1) <= i << (r/2)) s++; // sqrt increases
sqrtab[i] = s;

}
}

To summarize, the computations done by the i2b(i) method can be implemented

in constant time on the word-RAM using O(
√
n) extra memory to store the sqrttab and

logtab arrays. These arrays can be rebuilt when n increases or decreases by a factor of 2,

and the cost of this rebuilding can be amortized over the number of add(i,x) and remove(i)

operations that caused the change in n in the same way that the cost of resize() is analyzed

in the ArrayStack implementation.

52

2. Array-Based Lists 2.7. Discussion and Exercises

2.7 Discussion and Exercises

Most of the data structures described in this chapter are folklore. They can be found in im-

plementations dating back over 30 years. For example, implementations of stacks, queues,

and deques which generalize easily to the ArrayStack, ArrayQueue and ArrayDeque struc-

tures described here are discussed by Knuth [46, Section 2.2.2].

Brodnik et al. [13] seem to have been the first to describe the RootishArrayStack

and prove a
√
n lower-bound like that in Section 2.6.2. They also present a different struc-

ture that uses a more sophisticated choice of block sizes in order to avoid computing square

roots in the i2b(i) method. With their scheme, the block containing i is block blog(i+ 1)c,
which is just the index of the leading 1 bit in the binary representation of i+1. Some com-

puter architectures provide an instruction for computing the index of the leading 1-bit in

an integer.

A structure related to the RootishArrayStack is the 2-level tiered-vector of Goodrich

and Kloss [35]. This structure supports get(i,x) and set(i,x) in constant time and add(i,x)

and remove(i) in O(
√
n) time. These running times are similar to what can be achieved

with the more careful implementation of a RootishArrayStack discussed in Exercise 2.11.

Exercise 2.1. In the ArrayStack implementation, after the first call to remove(i), the back-

ing array, a, contains n + 1 non-null values even though the ArrayStack only contains n

elements. Where is the extra non-null value? Discuss any consequences this might have

on the Java Runtime Environment’s memory manager.

Exercise 2.2. The List method addAll(i,c) inserts all elements of the Collection c into

the list at position i. (The add(i,x) method is a special case where c = {x}.) Explain why, for

the data structures in this chapter, it is not efficient to implement addAll(i,c) by repeated

calls to add(i,x). Design and implement a more efficient implementation.

Exercise 2.3. Design and implement a RandomQueue. This is an implementation of the

Queue interface in which the remove() operation removes an element that is chosen uni-

formly at random among all the elements currently in the queue. (Think of a RandomQueue

as a bag in which we can add elements or reach in and blindly remove some random ele-

ment.) The add(x) and remove() operations in a RandomQueue should run in constant time

per operation.

Exercise 2.4. Design and implement a Treque (triple-ended queue). This is a List imple-

mentation in which get(i) and set(i,x) run in constant time and add(i,x) and remove(i)

53

2. Array-Based Lists 2.7. Discussion and Exercises

run in time

O(1 + min{i,n− i, |n/2− i|}) .
In other words, modifications are fast if they are near either end or near the middle of the

list.

Exercise 2.5. Implement a method rotate(a,r) that “rotates” the array a so that a[i] moves

to a[(i+ r) mod a.length], for all i ∈ {0, . . . ,a.length}.
Exercise 2.6. Implement a method rotate(r) that “rotates” a List so that list item i

becomes list item (i + r) mod n. When run on an ArrayDeque, or a DualArrayDeque,

rotate(r) should run in O(1 + min{r,n− r}) time.

Exercise 2.7. Modify the ArrayDeque implementation so that the shifting done by add(i,x),

remove(i), and resize() is done using System.arraycopy(s,i,d,j,n).

Exercise 2.8. Modify the ArrayDeque implementation so that it does not use the % operator

(which is expensive on some systems). Instead, it should make use of the fact that, if

a.length is a power of 2, then k%a.length=k&(a.length− 1). (Here, & is the bitwise-and

operator.)

Exercise 2.9. Design and implement a variant of ArrayDeque that does not do any mod-

ular arithmetic at all. Instead, all the data sits in a consecutive block, in order, inside an

array. When the data overruns the beginning or the end of this array, a modified rebuild()

operation is performed. The amortized cost of all operations should be the same as in an

ArrayDeque.

Hint: Making this work is really all about how a rebuild() operation is performed. You

would like rebuild() to put the data structure into a state where the data cannot run off

either end until at least n/2 operations have been performed.

Test the performance of your implementation against the ArrayDeque. Optimize

your implementation (by using System.arraycopy(a,i,b,i,n)) and see if you can get it to

outperform the ArrayDeque implementation.

Exercise 2.10. Design and implement a version of a RootishArrayStack that has only

O(
√
n) wasted space, but that can perform add(i,x) and remove(i,x) operations in O(1 +

min{i,n− i}) time.

Exercise 2.11. Design and implement a version of a RootishArrayStack that has only

O(
√
n) wasted space, but that can perform add(i,x) and remove(i,x) operations in O(1 +

min{√n,n− i}) time. (For an idea on how to do this, see Section 3.3.)

54

2. Array-Based Lists 2.7. Discussion and Exercises

Exercise 2.12. Design and implement a version of a RootishArrayStack that has only

O(
√
n) wasted space, but that can perform add(i,x) and remove(i,x) operations in O(1 +

min{i,√n,n− i}) time. (See Section 3.3 for ideas on how to achieve this.)

Exercise 2.13. Design and implement a CubishArrayStack. This three level structure im-

plements the List interface using at most O(n2/3) wasted space. In this structure, get(i)

and set(i,x) take constant time; while add(i,x) and remove(i) take O(n1/3) amortized

time.

55

2. Array-Based Lists 2.7. Discussion and Exercises

56

Chapter 3

Linked Lists

In this chapter, we continue to study implementations of the List interface, this time

using pointer-based data structures rather than arrays. The structures in this chapter are

made up of nodes that contain the list items. The nodes are linked together into a sequence

using references (pointers). We first study singly-linked lists, which can implement Stack

and (FIFO) Queue operations in constant time per operation.

Linked lists have advantages and disadvantages relative to array-based implemen-

tations of the List interface. The primary disadvantage is that we lose the ability to access

any element using get(i) or set(i,x) in constant time. Instead, we have to walk through

the list, one element at a time, until we reach the ith element. The primary advantage is

that they are more dynamic: Given a reference to any list node u, we can delete u or insert

a node adjacent to u in constant time. This is true no matter where u is in the list.

3.1 SLList: A Singly-Linked List

An SLList (singly-linked list) is a sequence of Nodes. Each node u stores a data value

u.x and a reference u.next to the next node in the sequence. For the last node w in the

sequence, w.next = null

SLList
class Node {
T x;
Node next;

}

For efficiency, an SLList uses variables head and tail to keep track of the first

and last node in the sequence, as well as an integer n to keep track of the length of the

sequence:

57

3. Linked Lists 3.1. SLList: A Singly-Linked List

a b c d e

head tail

a b c d e

add(x)

x

head tail

b c d e

remove()

x

head tail

c d e

pop()

x

head tail

y c d e

push(y)

x

head tail

Figure 3.1: A sequence of Queue (add(x) and remove()) and Stack (push(x) and pop()) op-

erations on an SLList.

SLList
Node head;
Node tail;
int n;

A sequence of Stack and Queue operations on an SLList is illustrated in Figure 3.1.

An SLList can efficiently implement the Stack operations push() and pop() by

adding and removing elements at the head of the sequence. The push() operation sim-

ply creates a new node u with data value x, sets u.next to the old head of the list and

makes u the new head of the list. Finally, it increments n since the size of the SLList has

increased by one:
SLList

T push(T x) {
Node u = new Node();
u.x = x;
u.next = head;
head = u;
if (n == 0)

tail = u;
n++;
return x;

}

The pop() operation, after checking that the SLList is not empty, removes the head

by setting head = head.next and decrementing n. A special case occurs when the last

58

3. Linked Lists 3.1. SLList: A Singly-Linked List

element is being removed, in which case tail is set to null:
SLList

T pop() {
if (n == 0) return null;
T x = head.x;
head = head.next;
if (--n == 0) tail = null;
return x;

}

Clearly, both the push(x) and pop() operations run in O(1) time.

3.1.1 Queue Operations

An SLList can also efficiently implement the FIFO queue operations add(x) and remove().

Removals are done from the head of the list, and are identical to the pop() operation:
SLList

T remove() {
if (n == 0) return null;
T x = head.x;
head = head.next;
if (--n == 0) tail = null;
return x;

}

Additions, on the other hand, are done at the tail of the list. In most cases, this is

done by setting tail.next = u, where u is the newly created node that contains x. However,

a special case occurs when n = 0, in which case tail = head = null. In this case, both tail

and head are set to u.
SLList

boolean add(T x) {
Node u = new Node();
u.x = x;
if (n == 0) {

head = u;
} else {

tail.next = u;
}
tail = u;
n++;
return true;

}

Clearly, both add(x) and remove() take constant time.

59

3. Linked Lists 3.2. DLList: A Doubly-Linked List

3.1.2 Summary

The following theorem summarizes the performance of an SLList:

Theorem 3.1. An SLList implements the Stack and (FIFO) Queue interfaces. The push(x),

pop(), add(x) and remove() operations run in O(1) time per operation.

An SLList comes very close to implementing the full set of Deque operations. The

only missing operation is removal from the tail of an SLList. Removing from the tail of

an SLList is difficult because it requires updating the value of tail so that it points to

the node w that precedes tail in the SLList; this is the node w such that w.next = tail.

Unfortunately, the only way to get to w is by traversing the SLList starting at head and

taking n− 2 steps.

3.2 DLList: A Doubly-Linked List

A DLList (doubly-linked list) is very similar to an SLList except that each node u in a

DLList has references to both the node u.next that follows it and the node u.prev that

precedes it.

DLList
class Node {
T x;
Node prev, next;

}

When implementing an SLList, we saw that there were always some special cases

to worry about. For example, removing the last element from an SLList or adding an

element to an empty SLList requires special care so that head and tail are correctly

updated. In a DLList, the number of these special cases increases considerably. Perhaps

the cleanest way to take care of all these special cases in a DLList is to introduce a dummy

node. This is a node that does not contain any data, but acts as a placeholder so that there

are no special nodes; every node has both a next and a prev, with dummy acting as the node

that follows the last node in the list and that precedes the first node in the list. In this way,

the nodes of the list are (doubly-)linked into a cycle, as illustrated in Figure 3.2.

DLList
int n;
Node dummy;
DLList() {
dummy = new Node();
dummy.next = dummy;

60

3. Linked Lists 3.2. DLList: A Doubly-Linked List

a b c d e

dummy

Figure 3.2: A DLList containing a,b,c,d,e.

dummy.prev = dummy;
n = 0;

}

Finding the node with a particular index in a DLList is easy; we can either start at

the head of the list (dummy.next) and work forward, or start at the tail of the list (dummy.prev)

and work backward. This allows us to reach the ith node in O(1 + min{i,n− i}) time:

DLList
Node getNode(int i) {
Node p = null;
if (i < n / 2) {

p = dummy.next;
for (int j = 0; j < i; j++)
p = p.next;

} else {
p = dummy;
for (int j = n; j > i; j--)
p = p.prev;

}
return (p);

}

The get(i) and set(i,x) operations are now also easy. We first find the ith node

and then get or set its x value:

DLList
T get(int i) {
return getNode(i).x;

}
T set(int i, T x) {
Node u = getNode(i);
T y = u.x;
u.x = x;

61

3. Linked Lists 3.2. DLList: A Doubly-Linked List

p w

u

· · ·· · ·

u.nextu.prev

Figure 3.3: Adding the node u before the node w in a DLList.

return y;
}

The running time of these operations is dominated by the time it takes to find the

ith node, and is therefore O(1 + min{i,n− i}).

3.2.1 Adding and Removing

If we have a reference to a node w in a DLList and we want to insert a node u before w, then

this is just a matter of setting u.next = w, u.prev = w.prev, and then adjusting u.prev.next

and u.next.prev. (See Figure 3.3.) Thanks to the dummy node, there is no need to worry

about w.prev or w.next not existing.

DLList
Node addBefore(Node w, T x) {
Node u = new Node();
u.x = x;
u.prev = w.prev;
u.next = w;
u.next.prev = u;
u.prev.next = u;
n++;
return u;

}

Now, the list operation add(i,x) is trivial to implement. We find the ith node in

the DLList and insert a new node u that contains x just before it.

DLList
void add(int i, T x) {
addBefore(getNode(i), x);

}

62

3. Linked Lists 3.2. DLList: A Doubly-Linked List

The only non-constant part of the running time of add(i,x) is the time it takes to

find the ith node (using getNode(i)). Thus, add(i,x) runs in O(1 + min{i,n− i}) time.

Removing a node w from a DLList is easy. We need only adjust pointers at w.next

and w.prev so that they skip over w. Again, the use of the dummy node eliminates the need

to consider any special cases:

DLList
void remove(Node w) {
w.prev.next = w.next;
w.next.prev = w.prev;
n--;

}

Now the remove(i) operation is trivial. We find the node with index i and remove

it:
DLList

T remove(int i) {
Node w = getNode(i);
remove(w);
return w.x;

}

Again, the only expensive part of this operation is finding the ith node using

getNode(i), so remove(i) runs in O(1 + min{i,n− i}) time.

3.2.2 Summary

The following theorem summarizes the performance of a DLList:

Theorem 3.2. A DLList implements the List interface. The get(i), set(i,x), add(i,x) and

remove(i) operations run in O(1 + min{i,n− i}) time per operation.

It is worth noting that, if we ignore the cost of the getNode(i) operation, then all

operations on a DLList take constant time. Thus, the only expensive part of operations on

a DLList is finding the relevant node. Once we have the relevant node, adding, removing,

or accessing the data at that node takes only constant time.

This is in sharp contrast to the array-based List implementations of Chapter 2; in

those implementations, the relevant array item can be found in constant time. However,

addition or removal requires shifting elements in the array and, in general, takes non-

constant time.

63

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

For this reason, linked list structures are well-suited to applications where refer-

ences to list nodes can be obtained through external means. An example of this is the

LinkedHashSet data structure found in the Java Collections Framework, in which a set of

items is stored in a doubly-linked list and the nodes of the doubly-linked list are stored in

a hash table (discussed in Chapter 5). When elements are removed from a LinkedHashSet,

the hash table is used to find the relevant list node in constant time and then the list node

is deleted (also in constant time).

3.3 SEList: A Space-Efficient Linked List

One of the drawbacks of linked lists (besides the time it takes to access elements that are

deep within the list) is their space usage. Each node in a DLList requires an additional

two references to the next and previous nodes in the list. Two of the fields in a Node are

dedicated to maintaining the list and only one of the fields is for storing data!

An SEList (space-efficient list) reduces this wasted space using a simple idea:

Rather than store individual elements in a DLList, we store a block (array) containing

several items. More precisely, an SEList is parameterized by a block size b. Each individ-

ual node in an SEList stores a block that can hold up to b+ 1 elements.

It will turn out, for reasons that become clear later, that it will be helpful if we

can do Deque operations on each block. The data structure we choose for this is a BDeque

(bounded deque), derived from the ArrayDeque structure described in Section 2.4. The

BDeque differs from the ArrayDeque in one small way: When a new BDeque is created, the

size of the backing array a is fixed at b+ 1 and it never grows or shrinks. The important

property of a BDeque is that it allows for the addition or removal of elements at either the

front or back in constant time. This will be useful as elements are shifted from one block

to another.
SEList

class BDeque extends ArrayDeque<T> {
BDeque() {

super(SEList.this.type());
a = newArray(b+1);

}
void resize() { }

}

An SEList is then a doubly-linked list of blocks:
SEList

class Node {
BDeque d;

64

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

Node prev, next;
}

SEList
int n;
Node dummy;

3.3.1 Space Requirements

An SEList places very tight restrictions on the number of elements in a block: Unless a

block is the last block, then that block contains at least b − 1 and at most b + 1 elements.

This means that, if an SEList contains n elements, then it has at most

n/(b− 1) + 1 =O(n/b)

blocks. The BDeque for each block contains an array of length b + 1 but, for all blocks

except the last, at most a constant amount of space is wasted in this array. The remaining

memory used by a block is also constant. This means that the wasted space in an SEList

is only O(b+n/b). By choosing a value of b within a constant factor of
√
n we can make the

space-overhead of an SEList approach the
√
n lower bound given in Section 2.6.2.

3.3.2 Finding Elements

The first challenge we face with an SEList is finding the list item with a given index i.

Note that the location of an element consists of two parts: The node u that contains the

block that contains the element as well as the index j of the element within its block.

SEList
class Location {
Node u;
int j;
Location(Node u, int j) {

this.u = u;
this.j = j;

}
}

To find the block that contains a particular element, we proceed in the same way

as in a DLList. We either start at the front of the list and traverse in the forward direction

or at the back of the list and traverse backwards until we reach the node we want. The

only difference is that, each time we move from one node to the next, we skip over a whole

block of elements.

65

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

SEList
Location getLocation(int i) {
if (i < n/2) {

Node u = dummy.next;
while (i >= u.d.size()) {
i -= u.d.size();
u = u.next;

}
return new Location(u, i);

} else {
Node u = dummy;
int idx = n;
while (i < idx) {
u = u.prev;
idx -= u.d.size();

}
return new Location(u, i-idx);

}
}

Remember that, with the exception of at most one block, each block contains at

least b− 1 elements, so each step in our search gets us b− 1 elements closer to the element

we are looking for. If we are searching forward, this means we reach the node we want after

O(1 + i/b) steps. If we search backwards, we reach the node we want after O(1 + (n− i)/b)

steps. The algorithm takes the smaller of these two quantities depending on the value of

i, so the time to locate the item with index i is O(1 + min{i,n− i}/b).

Once we know how to locate the item with index i, the get(i) and set(i,x) opera-

tions translate into getting or setting a particular index in the correct block:
SEList

T get(int i) {
Location l = getLocation(i);
return l.u.d.get(l.j);

}
T set(int i, T x) {
Location l = getLocation(i);
T y = l.u.d.get(l.j);
l.u.d.set(l.j,x);
return y;

}

The running times of these operations are dominated by the time it takes to locate

the item, so they also run in O(1 + min{i,n− i}/b) time.

66

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

3.3.3 Adding an Element

Things start to get complicated when adding elements to an SEList. Before considering

the general case, we consider the easier operation, add(x), in which x is added to the end

of the list. If the last block is full (or does not exist because there are no blocks yet), then

we first allocate a new block and append it to the list of blocks. Now that we are sure that

the last block exists and is not full, we append x to the last block.

SEList
boolean add(T x) {
Node last = dummy.prev;
if (last == dummy || last.d.size() == b+1) {

last = addBefore(dummy);
}
last.d.add(x);
n++;
return true;

}

Things get more complicated when we add to the interior of the list using add(i,x).

We first locate i to get the node u whose block contains the ith list item. The problem is

that we want to insert x into u’s block, but we have to be prepared for the case where u’s

block already contains b+ 1 elements, so that it is full and there is no room for x.

Let u0,u1,u2, . . . denote u, u.next, u.next.next, and so on. We explore u0,u1,u2, . . .

looking for a node that can provide space for x. Three cases can occur during our space

exploration (see Figure 3.4):

1. We quickly (in r + 1 ≤ b steps) find a node ur whose block is not full. In this case, we

perform r shifts of an element from one block into the next, so that the free space in

ur becomes a free space in u0. We can then insert x into u0’s block.

2. We quickly (in r+1 ≤ b steps) run off the end of the list of blocks. In this case, we add

a new empty block to the end of the list of blocks and proceed as in the first case.

3. After b steps we do not find any block that is not full. In this case, u0, . . . ,ub−1 is a

sequence of b blocks that each contain b + 1 elements. We insert a new block ub at

the end of this sequence and spread the original b(b+ 1) elements so that each block

of u0, . . . ,ub contains exactly b elements. Now u0’s block contains only b elements so

it has room for us to insert x.

67

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

a b c d e f g h i j· · · · · ·

a x b c d e f g h i· · · · · ·j

a b c d e f g h· · ·

a x b c d e f g h· · ·

a b c d e f g h i j· · · · · ·

a x b c d e f g h· · · i

k l

· · ·j k l

Figure 3.4: The three cases that occur during the addition of an item x in the interior of an

SEList. (This SEList has block size b = 3.)

SEList
void add(int i, T x) {
if (i == n) {

add(x);
return;

}
Location l = getLocation(i);
Node u = l.u;
int r = 0;
while (r < b && u != dummy && u.d.size() == b+1) {

u = u.next;
r++;

}
if (r == b) { // found b blocks each with b+1 elements

spread(l.u);
u = l.u;

}
if (u == dummy) { // ran off the end of the list - add new node

u = addBefore(u);
}
while (u != l.u) { // work backwards, shifting an element at each step

u.d.add(0, u.prev.d.remove(u.prev.d.size()-1));
u = u.prev;

}

68

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

u.d.add(l.j, x);
n++;

}

The running time of the add(i,x) operation depends on which of the three cases

above occurs. Cases 1 and 2 involve examining and shifting elements through at most b

blocks and take O(b) time. Case 3 involves calling the spread(u) method, which moves

b(b + 1) elements and takes O(b2) time. If we ignore the cost of Case 3 (which we will

account for later with amortization) this means that the total running time to locate i and

perform the insertion of x is O(b+ min{i,n− i}/b).

3.3.4 Removing an Element

Removing an element, using the remove(i) method from an SEList is similar to adding an

element. We first locate the node u that contains the element with index i. Now, we have

to be prepared for the case where we cannot remove an element from u without causing

u’s block to have size less than b− 1, which is not allowed.

Again, let u0,u1,u2, . . . denote u, u.next, u.next.next, We examine u0,u1,u2, . . . in

order looking for a node from which we can borrow an element to make the size of u0’s

block larger than b− 1. There are three cases to consider (see Figure 3.5):

1. We quickly (in r + 1 ≤ b steps) find a node whose block contains more than b − 1

elements. In this case, we perform r shifts of an element from one block into the

previous, so that the extra element in ur becomes an extra element in u0. We can

then remove the appropriate element from u0’s block.

2. We quickly (in r + 1 ≤ b steps) run off the end of the list of blocks. In this case, ur
is the last block, and there is no requirement that ur ’s block contain at least b − 1

elements. Therefore, we proceed as above, borrowing an element from ur to make an

extra element in u0. If this causes ur ’s block to become empty, then we remove it.

3. After b steps we do not find any block containing more than b − 1 elements. In

this case, u0, . . . ,ub−1 is a sequence of b blocks that each contain b − 1 elements. We

gather these b(b−1) elements into u0, . . . ,ub−2 so that each of these b−1 blocks contains

exactly b elements and we remove ub−1, which is now empty. Now u0’s block contains

b elements so we can remove the appropriate element from it.
SEList

T remove(int i) {
Location l = getLocation(i);

69

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

a b c d e f· · · · · ·

a c d e f g· · · · · ·

g

a b c d e f· · ·

a c d e f· · ·

a b c d e f· · · · · ·

a c d e· · · · · ·f

Figure 3.5: The three cases that occur during the removal of an item x in the interior of an

SEList. (This SEList has block size b = 3.)

T y = l.u.d.get(l.j);
Node u = l.u;
int r = 0;
while (r < b && u != dummy && u.d.size() == b-1) {

u = u.next;
r++;

}
if (r == b) { // found b blocks each with b-1 elements

gather(l.u);
}
u = l.u;
u.d.remove(l.j);
while (u.d.size() < b-1 && u.next != dummy) {

u.d.add(u.next.d.remove(0));
u = u.next;

}
if (u.d.isEmpty()) remove(u);
n--;
return y;

}

Like the add(i,x) operation, the running time of the remove(i) operation is O(b +

min{i,n− i}/b) if we ignore the cost of the gather(u) method that occurs in Case 3.

70

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

3.3.5 Amortized Analysis of Spreading and Gathering

Next, we consider the cost of the gather(u) and spread(u) methods that may be executed

by the add(i,x) and remove(i) methods. For completeness, here they are:

SEList
void spread(Node u) {
Node w = u;
for (int j = 0; j < b; j++) {

w = w.next;
}
w = addBefore(w);
while (w != u) {

while (w.d.size() < b)
w.d.add(0,w.prev.d.remove(w.prev.d.size()-1));

w = w.prev;
}

}

SEList
void gather(Node u) {
Node w = u;
for (int j = 0; j < b-1; j++) {

while (w.d.size() < b)
w.d.add(w.next.d.remove(0));

w = w.next;
}
remove(w);

}

The running time of each of these methods is dominated by the two nested loops.

Both the inner loop and outer loop execute at most b+ 1 times, so the total running time

of each of these methods is O((b+ 1)2) =O(b2). However, the following lemma shows that

these methods execute on at most one out of every b calls to add(i,x) or remove(i).

Lemma 3.1. If an empty SEList is created and any sequence of m ≥ 1 calls to add(i,x) and

remove(i) are performed, then the total time spent during all calls to spread() and gather() is

O(bm).

Proof. We will use the potential method of amortized analysis. We say that a node u is

fragile if u’s block does not contain b elements (so that u is either the last node, or contains

b − 1 or b + 1 elements). Any node whose block contains b elements is rugged. Define the

potential of an SEList as the number of fragile nodes it contains. We will consider only

71

3. Linked Lists 3.3. SEList: A Space-Efficient Linked List

the add(i,x) operation and its relation to the number of calls to spread(u). The analysis of

remove(i) and gather(u) is identical.

Notice that, if Case 1 occurs during the add(i,x) method, then only one node, ur
has the size of its block changed. Therefore, at most one node, namely ur , goes from being

rugged to being fragile. If Case 2 occurs, then a new node is created, and this node is

fragile, but no other node changes sizes, so the number of fragile nodes increases by one.

Thus, in either Case 1 or Case 2 the potential of the SEList increases by at most 1.

Finally, if Case 3 occurs, it is because u0, . . . ,ub−1 are all fragile nodes. Then spread(u0)

is called and these b fragile nodes are replaced with b+1 rugged nodes. Finally, x is added

to u0’s block, making u0 fragile. In total the potential decreases by b− 1.

In summary, the potential starts at 0 (there are no nodes in the list). Each time

Case 1 or Case 2 occurs, the potential increases by at most 1. Each time Case 3 occurs, the

potential decreases by b − 1. The potential (which counts the number of fragile nodes) is

never less than 0. We conclude that, for every occurrence of Case 3, there are at least b− 1

occurrences of Case 1 or Case 2. Thus, for every call to spread(u) there are at least b calls

to add(i,x). This completes the proof.

3.3.6 Summary

The following theorem summarizes the performance of the SEList data structure:

Theorem 3.3. An SEList implements the List interface. Ignoring the cost of calls to spread(u)

and gather(u), an SEList with block size b supports the operations

• get(i) and set(i,x) in O(1 + min{i,n− i}/b) time per operation; and

• add(i,x) and remove(i) in O(b+ min{i,n− i}/b) time per operation.

Furthermore, beginning with an empty SEList, any sequence of m add(i,x) and remove(i)

operations results in a total of O(bm) time spent during all calls to spread(u) and gather(u).

The space (measured in words)1 used by an SEList that stores n elements is n+O(b+

n/b).

The SEList is a tradeoff between an ArrayList and a DLList where the relative

mix of these two structures depends on the block size b. At the extreme b = 2, each SEList

node stores at most 3 values, which is really not much different than a DLList. At the other

1Recall Section 1.3 for a discussion of how memory is measured.

72

3. Linked Lists 3.4. Discussion and Exercises

extreme, b > n, all the elements are stored in a single array, just like in an ArrayList. In

between these two extremes lies a tradeoff between the time it takes to add or remove a

list item and the time it takes to locate a particular list item.

3.4 Discussion and Exercises

Both singly-linked and doubly-linked lists are folklore, having been used in programs for

over 40 years. They are discussed, for example, by Knuth [46, Sections 2.2.3–2.2.5]. Even

the SEList data structure seems to be a well-known data structures exercise.

Exercise 3.1. Why is it not possible, in an SLList to use a dummy node to avoid all the

special cases that occur in the operations push(x), pop(), add(x), and remove()?

Exercise 3.2. Design and implement an SLList method, secondLast(), that returns the

second-last element of an SLList. Do this without using the member variable, n, that

keeps track of the size of the list.

Exercise 3.3. Describe and implement the List operations get(i), set(i,x), add(i,x) and

remove(i) on an SLList. Each of these operations should run in O(1 + i) time.

Exercise 3.4. Design and implement an SLList method, reverse() that reverses the order

of elements in an SLList. This method should run in O(n) time, should not use recursion,

should not use any secondary data structures, and should not create any new nodes.

Exercise 3.5. Design and implement SLList and DLList methods called checkSize().

These methods walk through the list and count the number of nodes to see if this matches

the value, n, stored in the list. These methods return nothing, but throw an exception if

the size they compute does not match the value of n.

Exercise 3.6. Without referring to this chapter, try to recreate the code for the addBefore(w)

operation, that creates a node, u, and adds it just before the node w in a DLList. If your

code does not exactly match the code given in this book it may still be correct. Test it and

see if it works.

The next few exercises involve performing manipulations on DLLists. These should

all be done without allocating any new nodes or temporary arrays. More specifically, they

can all be done only by changing the prev and next values of existing nodes.

Exercise 3.7. Write a DLList method isPalindrome() that returns true if the list is a

palindrome, i.e., the element at position i is equal to the element at position n − i − 1 for

all i ∈ {0, . . . ,n− 1}. Your code should run in O(n) time.

73

3. Linked Lists 3.4. Discussion and Exercises

Exercise 3.8. Implement a method rotate(r) that “rotates” a DLList so that list item i

becomes list item (i + r) mod n. This method should run in O(1 + min{r,n − r}) time and

should not modify any nodes in the list.

Exercise 3.9. Write a method, truncate(i), that truncates a DLList at position i. After

the execution of this method, the size of the list is i and it contains only the elements at

indices 0, . . . ,i−1. The return value is another DLList that contains the elements at indices

i, . . . ,n− 1. This method should run in O(min{i,n− i}) time.

Exercise 3.10. Write a DLList method, absorb(l2), that takes as an argument a DLList, l2,

empties it and appends its contents, in order, to the receiver. For example, if l1 contains

a,b,c and l2 contains d,e, f , then after calling l1.absorb(l2), l1 will contain a,b,c,d,e, f

and l2 will be empty.

Exercise 3.11. Write a method deal() that removes all the elements with odd-numbered

indices from a DLList and return a DLList containing these elements. For example, if l1,

contains the elements a,b,c,d,e, f , then after calling l1.deal(), l1 should contain a,c, e and

a list containing b,d,f should be returned.

Exercise 3.12. Write a method, reverse(), that reverses the order of elements in a DLList.

Exercise 3.13. This exercises walks you through an implementation of the merge sort al-

gorithm for sorting a DLList, as discussed in Section 11.1.1. In your implementation, per-

form comparisons between elements using the compareTo(x) method so that the resulting

implementation can sort any DLList containing elements that implement the Comparable

interface.

1. Write a DLList method called takeFirst(l2). This method takes the first node from

l2 and appends it to the the receiving list. This is equivalent to add(size(),l2.remove(0)),

except that it should not create a new node.

2. Write a DLList static method, merge(l1,l2), that takes two sorted lists l1 and l2,

merges them, and returns a new sorted list containing the result. This causes l1 and

l2 to be emptied in the proces. For example, if l1 contains a,c,d and l2 contains

b,e, f , then this method returns a new list containing a,b,c,d,e, f .

3. Write a DLList method sort() that sorts the elements contained in the list using the

merge sort algorithm. This recursive algorithm works as following:

(a) If the list contains 0 or 1 elements then there is nothing to do. Otherwise,

74

3. Linked Lists 3.4. Discussion and Exercises

(b) Split the list into two approximately equal length lists l1 and l2 using the

truncate(size()/2) method;

(c) Recursively sort l1;

(d) Recursively sort l2; and, finally,

(e) Merge l1 and l2 into a single sorted list.

The next few exercises are more advanced and require a clear understanding of

what happens to the minimum value stored in a Stack or Queue as items are added and

removed.

Exercise 3.14. Design and implement a MinStack data structure that can store comparable

elements and supports the stack operations push(x), pop(), and size(), as well as the min()

operation, which returns the minimum value currently stored in the data structure. All

operations should run in constant time.

Exercise 3.15. Design an implement a MinQueue data structure that can store comparable

elements and supports the queue operations add(x), remove(), and size(), as well as the

min() operation, which returns the minimum value currently stored in the data structure.

All operations should run in constant amortized time.

Exercise 3.16. Design an implement a MinDeque data structure that can store compara-

ble elements and supports the queue operations addFirst(x), addLast(x) removeFirst(),

removeLast() and size(), as well as the min() operation, which returns the minimum value

currently stored in the data structure. All operations should run in constant amortized

time.

The next exercises are designed to test the reader’s understanding of the imple-

mentation an analysis of the space-efficient SEList:

Exercise 3.17. Prove that, if an SEList is used like a Stack (so that the modifications are

done using push(x) ≡ add(size(),x) and pop() ≡ remove(size()− 1)) then these operations

run in constant amortized time, independent of the value of b.

Exercise 3.18. Design an implement of a version of an SEList that supports all the Deque

operations in constant amortized time per operation, independent of the value of b.

75

3. Linked Lists 3.4. Discussion and Exercises

76

Chapter 4

Skiplists

In this chapter, we discuss a beautiful data structure: the skiplist, that has a variety of

applications. Using a skiplist we can implement a List that is fast for all the operations

get(i), set(i,x), add(i,x), and remove(i). We can also implement an SSet in which all

operations run in O(logn) expected time.

Skiplists rely on randomization for their efficiency. In particular, a skiplist uses

random coin tosses when an element is inserted to determine the height of that element.

The performance of skiplists is expressed in terms of expected running times and lengths

of paths. This expectation is taken over the random coin tosses used by the skiplist. In the

implementation, the random coin tosses used by a skiplist are simulated using a pseudo-

random number (or bit) generator.

4.1 The Basic Structure

Conceptually, a skiplist is a sequence of singly-linked lists L0, . . . ,Lh, where each Lr con-

tains a subset of the items in Lr−1. We start with the input list L0 that contains n items

and construct L1 from L0, L2 from L1, and so on. The items in Lr are obtained by tossing

a coin for each element, x, in Lr−1 and including x in Lr if the coin comes up heads. This

process ends when we create a list Lr that is empty. An example of a skiplist is shown in

Figure 4.1.

For an element, x, in a skiplist, we call the height of x the largest value r such that

x appears in Lr . Thus, for example, elements that only appear in L0 have height 0. If we

spend a few moments thinking about it, we notice that the height of x corresponds to the

following experiment: Toss a coin repeatedly until the first time it comes up tails. How

many times did it come up heads? The answer, not surprisingly, is that the expected height

of a node is 1. (We expect to toss the coin twice before getting tails, but we don’t count the

last toss.) The height of a skiplist is the height of its tallest node.

77

4. Skiplists 4.1. The Basic Structure

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

Figure 4.1: A skiplist containing seven elements.

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

Figure 4.2: The search path for the node containing 4 in a skiplist.

At the head of every list is a special node, called the sentinel, that acts as a dummy

node for the list. The key property of skiplists is that there is a short path, called the search

path, from the sentinel in Lh to every node in L0. Remembering how to construct a search

path for a node, u, is easy (see Figure 4.2) : Start at the top left corner of your skiplist

(the sentinel in Lh) and always go right unless that would overshoot u, in which case you

should take a step down into the list below.

More precisely, to construct the search path for the node u in L0 we start at the

sentinel, w, in Lh. Next, we examine w.next. If w.next contains an item that appears before

u in L0, then we set w = w.next. Otherwise, we move down and continue the search at the

occurrence of w in the list Lh−1. We continue this way until we reach the predecessor of u

in L0.

The following result, which we will prove in Section 4.4, shows that the search path

is quite short:

Lemma 4.1. The expected length of the search path for any node, u, in L0 is at most 2logn +

O(1) =O(logn).

78

4. Skiplists 4.2. SkiplistSSet: An Efficient SSet Implementation

A space-efficient way to implement a Skiplist is to define a Node, u, as consisting

of a data value, x, and an array, next, of pointers, where u.next[i] points to u’s successor

in the list Li. In this way, the data, x, in a node is referenced only once, even though x may

appear in several lists.

SkiplistSSet
class Node<T> {
T x;
Node<T>[] next;
Node(T ix, int h) {

x = ix;
next = (Node<T>[])Array.newInstance(Node.class, h+1);

}
int height() {

return next.length - 1;
}

}

The next two sections of this chapter discuss two different applications of skiplists.

In each of these applications, L0 stores the main structure (a list of elements or a sorted

set of elements). The primary difference between these structures is in how a search path

is navigated; in particular, they differ in how they decide if a search path should go down

into Lr−1 or go right within Lr .

4.2 SkiplistSSet: An Efficient SSet Implementation

A SkiplistSSet uses a skiplist structure to implement the SSet interface. When used this

way, the list L0 stores the elements of the SSet in sorted order. The find(x) method works

by following the search path for the smallest value y such that y ≥ x:

SkiplistSSet
Node<T> findPredNode(T x) {
Node<T> u = sentinel;
int r = h;
while (r >= 0) {

while (u.next[r] != null && compare(u.next[r].x,x) < 0)
u = u.next[r]; // go right in list r

r--; // go down into list r-1
}
return u;

}
T find(T x) {
Node<T> u = findPredNode(x);

79

4. Skiplists 4.2. SkiplistSSet: An Efficient SSet Implementation

return u.next[0] == null ? null : u.next[0].x;
}

Following the search path for y is easy: when situated at some node, u, in Lr, we

look right to u.next[r].x. If x > u.next[r].x, then we take a step to the right in Lr, otherwise

we move down into Lr−1. Each step (right or down) in this search takes only constant time

so, by Lemma 4.1, the expected running time of find(x) is O(logn).

Before we can add an element to a SkipListSSet, we need a method to simulate

tossing coins to determine the height, k, of a new node. We do this by picking a random

integer, z, and counting the number of trailing 1s in the binary representation of z:1

SkiplistSSet
int pickHeight() {
int z = rand.nextInt();
int k = 0;
int m = 1;
while ((z & m) != 0) {

k++;
m <<= 1;

}
return k;

}

To implement the add(x) method in a SkiplistSSet we search for x and then splice

x into a few lists L0,. . . ,Lk, where k is selected using the pickHeight() method. The easiest

way to do this is to use an array, stack, that keeps track of the nodes at which the search

path goes down from some list Lr into Lr−1. More precisely, stack[r] is the node in Lr

where the search path proceeded down into Lr−1. The nodes that we modify to insert x are

precisely the nodes stack[0], . . . ,stack[k]. The following code implements this algorithm

for add(x):
SkiplistSSet

boolean add(T x) {
Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {

while (u.next[r] != null && (comp = compare(u.next[r].x,x)) < 0)

1This method does not exactly replicate the coin-tossing experiment since the value of k will always be less

than the number of bits in an int. However, this will have negligible impact unless the number of elements

in the structure is much greater than 232 = 4294967296.

80

4. Skiplists 4.2. SkiplistSSet: An Efficient SSet Implementation

0 1 2 3 4 5 6

sentinel

3.5

add(3.5)

Figure 4.3: Adding the node containing 3.5 to a skiplist. The nodes stored in stack are

highlighted.

u = u.next[r];
if (u.next[r] != null && comp == 0) return false;
stack[r--] = u; // going down, store u

}
Node<T> w = new Node<T>(x, pickHeight());
while (h < w.height())

stack[++h] = sentinel; // increasing height of skiplist
for (int i = 0; i < w.next.length; i++) {

w.next[i] = stack[i].next[i];
stack[i].next[i] = w;

}
n++;
return true;

}

Removing an element, x, is done in a similar way, except that there is no need for

stack to keep track of the search path. The removal can be done as we are following the

search path. We search for x and each time the search moves downward from a node u, we

check if u.next.x = x and if so, we splice u out of the list:
SkiplistSSet

boolean remove(T x) {
boolean removed = false;
Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {

while (u.next[r] != null && (comp = compare(u.next[r].x, x)) < 0) {
u = u.next[r];

}
if (u.next[r] != null && comp == 0) {

81

4. Skiplists 4.3. SkiplistList: An Efficient Random-Access List Implementation

0 1 2 4 5 6

sentinel remove(3)

3

Figure 4.4: Removing the node containing 3 from a skiplist.

removed = true;
u.next[r] = u.next[r].next[r];
if (u == sentinel && u.next[r] == null)
h--; // skiplist height has gone down

}
r--;

}
if (removed) n--;
return removed;

}

4.2.1 Summary

The following theorem summarizes the performance of skiplists when used to implement

sorted sets:

Theorem 4.1. A SkiplistSSet implements the SSet interface. A SkiplistSSet supports the

operations add(x), remove(x), and find(x) in O(logn) expected time per operation.

4.3 SkiplistList: An Efficient Random-Access List Implementation

A SkiplistList implements the List interface on top of a skiplist structure. In a Skip-

listList, L0 contains the elements of the list in the order they appear in the list. Just like

with a SkiplistSSet, elements can be added, removed, and accessed in O(logn) time.

For this to be possible, we need a way to follow the search path for the ith element

in L0. The easiest way to do this is to define the notion of the length of an edge in some list,

Lr. We define the length of every edge in L0 as 1. The length of an edge, e, in Lr, r > 0,

is defined as the sum of the lengths of the edges below e in Lr−1. Equivalently, the length

of e is the number of edges in L0 below e. See Figure 4.5 for an example of a skiplist with

82

4. Skiplists 4.3. SkiplistList: An Efficient Random-Access List Implementation

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

1 1 1 1 1 1 1

3 1 1 1 1

113

3 2

5

5

Figure 4.5: The lengths of the edges in a skiplist.

the lengths of its edges shown. Since the edges of skiplists are stored in arrays, the lengths

can be stored the same way:

SkiplistList
class Node {
T x;
Node[] next;
int[] length;
Node(T ix, int h) {

x = ix;
next = (Node[])Array.newInstance(Node.class, h+1);
length = new int[h+1];

}
int height() {

return next.length - 1;
}

}

The useful property of this definition of length is that, if we are currently at a node

that is at position j in L0 and we follow an edge of length `, then we move to a node whose

position, in L0, is j+`. In this way, while following a search path, we can keep track of the

position, j, of the current node in L0. When at a node, u, in Lr, we go right if j plus the

length of the edge u.next[r] is less than i, otherwise we go down into Lr−1.

SkiplistList
Node findPred(int i) {
Node u = sentinel;
int r = h;
int j = -1; // the index of the current node in list 0
while (r >= 0) {

while (u.next[r] != null && j + u.length[r] < i) {
j += u.length[r];

83

4. Skiplists 4.3. SkiplistList: An Efficient Random-Access List Implementation

0 1 2 3 4 5 6

sentinel

x

add(4,x)

1 1 1 1 1 2 1 1 1 1

3

3

3

5 6

5 6

1

1

1 1 11 2 1

1 2 1

2 3 2

1

1

Figure 4.6: Adding an element to a SkiplistList.

u = u.next[r];
}
r--;

}
return u;

}

SkiplistList
T get(int i) {
return findPred(i).next[0].x;

}
T set(int i, T x) {
Node u = findPred(i).next[0];
T y = u.x;
u.x = x;
return y;

}

Since the hardest part of the operations get(i) and set(i,x) is finding the ith node

in L0, these operations run in O(logn) time.

Adding an element to a SkiplistList at a position, i, is fairly straightforward.

Unlike in a SkiplistSSet, we are sure that a new node will actually be added, so we can

do the addition at the same time as we search for the new node’s location. We first pick the

height, k, of the newly inserted node, w, and then follow the search path for i. Anytime

the search path moves down from Lr with r ≤ k, we splice w into Lr. The only extra care

needed is to ensure that the lengths of edges are updated properly. See Figure 4.6.

Note that, each time the search path goes down at a node, u, in Lr, the length of

the edge u.next[r] increases by one, since we are adding an element below that edge at

position i. Splicing the node w between two nodes, u and z, works as shown in Figure 4.7.

84

4. Skiplists 4.3. SkiplistList: An Efficient Random-Access List Implementation

j

`
u

j

u w

i

i− j ` +1− (i− j)

` +1

z

z

Figure 4.7: Updating the lengths of edges while splicing a node w into a skiplist.

While following the search path we are already keeping track of the position, j, of u in L0.

Therefore, we know that the length of the edge from u to w is i−j. We can also deduce the

length of the edge from w to z from the length, `, of the edge from u to z. Therefore, we

can splice in w and update the lengths of the edges in constant time.

This sounds more complicated than it actually is and the code is actually quite

simple:

SkiplistList
void add(int i, T x) {
Node w = new Node(x, pickHeight());
if (w.height() > h)

h = w.height();
add(i, w);

}

SkiplistList
Node add(int i, Node w) {
Node u = sentinel;
int k = w.height();
int r = h;
int j = -1; // index of u
while (r >= 0) {

while (u.next[r] != null && j+u.length[r] < i) {
j += u.length[r];
u = u.next[r];

}
u.length[r]++; // to account for new node in list 0
if (r <= k) {
w.next[r] = u.next[r];
u.next[r] = w;
w.length[r] = u.length[r] - (i - j);
u.length[r] = i - j;

}

85

4. Skiplists 4.3. SkiplistList: An Efficient Random-Access List Implementation

0 1 2 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

1 1 1 1 1

3 1 1

3

3 2 1

5 4

5 4

remove(3)

3
1 1

1 1

11 1

1

1

Figure 4.8: Removing an element from a SkiplistList.

r--;
}
n++;
return u;

}

By now, the implementation of the remove(i) operation in a SkiplistList should

be obvious. We follow the search path for the node at position i. Each time the search path

takes a step down from a node, u, at level r we decrement the length of the edge leaving u

at that level. We also check if u.next[r] is the element of rank i and, if so, splice it out of

the list at that level. An example is shown in Figure 4.8.

SkiplistList
T remove(int i) {
T x = null;
Node u = sentinel;
int r = h;
int j = -1; // index of node u
while (r >= 0) {

while (u.next[r] != null && j+u.length[r] < i) {
j += u.length[r];
u = u.next[r];

}
u.length[r]--; // for the node we are removing
if (j + u.length[r] + 1 == i && u.next[r] != null) {
x = u.next[r].x;
u.length[r] += u.next[r].length[r];
u.next[r] = u.next[r].next[r];
if (u == sentinel && u.next[r] == null)
h--;

}

86

4. Skiplists 4.4. Analysis of Skiplists

r--;
}
n--;
return x;

}

4.3.1 Summary

The following theorem summarizes the performance of the SkiplistList data structure:

Theorem 4.2. A SkiplistList implements the List interface. A SkiplistList supports the

operations get(i), set(i,x), add(i,x), and remove(i) in O(logn) expected time per operation.

4.4 Analysis of Skiplists

In this section, we analyze the expected height, size, and length of the search path in a

skiplist. This section requires a background in basic probability. Several proofs are based

on the following basic observation about coin tosses.

Lemma 4.2. Let T be the number of times a fair coin is tossed up to and including the first time

the coin comes up heads. Then E[T] = 2.

Proof. Suppose we stop tossing the coin the first time it comes up heads. Define the indi-

cator variable

Ii =


0 if the coin is tossed less than i times

1 if the coin is tossed i or more times

Note that Ii = 1 if and only if the first i−1 coin tosses are tails, so E[Ii] = Pr{Ii = 1} = 1/2i−1.

Observe that T , the total number of coin tosses, can be written as T =
∑∞
i=1 Ii . Therefore,

E[T] = E



∞∑

i=1

Ii




=
∞∑

i=1

E[Ii]

=
∞∑

i=1

1/2i−1

= 1 + 1/2 + 1/4 + 1/8 + · · ·
= 2 .

The next two lemmata tell us that skiplists have linear size:

87

4. Skiplists 4.4. Analysis of Skiplists

Lemma 4.3. The expected number of nodes in a skiplist containing n elements, not including

occurrences of the sentinel, is 2n.

Proof. The probability that any particular element, x, is included in list Lr is 1/2r, so the

expected number of nodes in Lr is n/2r.2 Therefore, the total expected number of nodes in

all lists is ∞∑

r=0

n/2r = n(1 + 1/2 + 1/4 + 1/8 + · · ·) = 2n .

Lemma 4.4. The expected height of a skiplist containing n elements is at most logn+ 2.

Proof. For each r ∈ {1,2,3, . . . ,∞}, define the indicator random variable

Ir =


0 if Lr is empty

1 if Lr is non-empty

The height, h, of the skiplist is then given by

h =
∞∑

i=1

Ir .

Note that Ir is never more than the length, |Lr|, of Lr, so

E[Ir] ≤ E[|Lr|] = n/2r .

Therefore, we have

E[h] = E



∞∑

r=1

Ir




=
∞∑

r=1

E[Ir]

=
blognc∑

r=1

E[Ir] +
∞∑

r=blognc+1

E[Ir]

≤
blognc∑

r=1

1 +
∞∑

r=blognc+1

n/2r

≤ logn+
∞∑

r=0

1/2r

= logn+ 2 .

2See Section 1.2.4 to see how this is derived using indicator variables and linearity of expectation.

88

4. Skiplists 4.4. Analysis of Skiplists

Lemma 4.5. The expected number of nodes in a skiplist containing n elements, including all

occurrences of the sentinel, is 2n+O(logn).

Proof. By Lemma 4.3, the expected number of nodes, not including the sentinel, is 2n.

The number of occurrences of the sentinel is equal to the height, h, of the skiplist so,

by Lemma 4.4 the expected number of occurrences of the sentinel is at most logn + 2 =

O(logn).

Lemma 4.6. The expected length of a search path in a skiplist is at most 2logn+O(1).

Proof. The easiest way to see this is to consider the reverse search path for a node, x. This

path starts at the predecessor of x in L0. At any point in time, if the path can go up a

level, then it does. If it cannot go up a level then it goes left. Thinking about this for a few

moments will convince us that the reverse search path for x is identical to the search path

for x, except that it is reversed.

The number of nodes that the reverse search path visits at a particular level, r, is

related to the following experiment: Toss a coin. If the coin comes up heads then go up

and stop, otherwise go left and repeat the experiment. The number of coin tosses before

the heads then represents the number of steps to the left that a reverse search path takes

at a particular level.3 Lemma 4.2 tells us that the expected number of coin tosses before

the first heads is 1.

Let Sr denote the number of steps the forward search path takes at level r that go

to the right. We have just argued that E[Sr] ≤ 1. Furthermore, Sr ≤ |Lr|, since we can’t take

more steps in Lr than the length of Lr, so

E[Sr] ≤ E[|Lr|] = n/2r .

We can now finish as in the proof of Lemma 4.4. Let S be the length of the search path for

3Note that this might overcount the number of steps to the left, since the experiment should end either at

the first heads or when the search path reaches the sentinel, whichever comes first. This is not a problem since

the lemma is only stating an upper bound.

89

4. Skiplists 4.5. Discussion and Exercises

some node, u, in a skiplist, and let h be the height of the skiplist. Then

E[S] = E


h+

∞∑

r=0

Sr




= E[h] +
∞∑

r=0

E[Sr]

= E[h] +
blognc∑

r=0

E[Sr] +
∞∑

r=blognc+1

E[Sr]

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=blognc+1

n/2r

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=0

1/2r

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=0

1/2r

≤ E[h] + logn+ 3

≤ 2logn+ 5 .

The following theorem summarizes the results in this section:

Theorem 4.3. A skiplist containing n elements has expected size O(n) and the expected length

of the search path for any particular element is at most 2logn+O(1).

4.5 Discussion and Exercises

Skiplists were introduced by Pugh [61] who also presented a number of applications of

skiplists [60]. Since then they have been studied extensively. Several researchers have

done very precise analysis of the expected length and variance in length of the search path

for the ith element in a skiplist [45, 44, 58]. Deterministic versions [53], biased versions

[8, 26], and self-adjusting versions [12] of skiplists have all been developed. Skiplist im-

plementations have been written for various languages and frameworks and have seen use

in open-source database systems [69, 63]. A variant of skiplists is used in the HP-UX op-

erating system kernel’s process management structures [42]. Skiplists are even part of the

Java 1.6 API [55].

Exercise 4.1. Illustrate the search paths for 2.5 and 5.5 on the skiplist in Figure 4.1.

90

4. Skiplists 4.5. Discussion and Exercises

Exercise 4.2. Illustrate the addition of the values 0.5 (with height 1) and then 3.5 (with

height 2) to the skiplist in Figure 4.1.

Exercise 4.3. Illustrate the removal of the values 1 and then 3 from the skiplist in Fig-

ure 4.1.

Exercise 4.4. Illustrate the execution of remove(2) on the SkiplistList in Figure 4.5.

Exercise 4.5. Illustrate the execution of add(3,x) on the SkiplistList in Figure 4.5. As-

sume that pickHeight() selects a height of 4 for the newly created node.

Exercise 4.6. Show that, during an add(x) or a remove(x) operation, the expected number

of pointers in a SkiplistSet that get changed is constant.

Exercise 4.7. Suppose that, instead of promoting an element from Li−1 into Li based on a

coin toss, we promote it with some probability p, 0 < p < 1.

1. Show that the expected length of a search path is at most (1/p) log1/p n+O(1).

2. What is the value of p that minimizes the preceding expression?

3. What is the expected height of the skiplist?

4. What is the expected number of nodes in the skiplist?

Exercise 4.8. The find(x) method in a SkiplistSet sometimes performs redundant com-

parisons; these occur when x is compared to the same value more than once. They can occur

when, for some node, u, u.next[r] = u.next[r− 1]. Show how these redundant comparisons

happen and modify find(x) so that they are avoided. Analyze the expected number of

comparisons done by your modified find(x) method.

Exercise 4.9. Design and implement a version of a skiplist that implements the SSet inter-

face, but also allows fast access to elements by rank. That is, it also supports the function

get(i), which returns the element whose rank is i in O(logn) expected time. (The rank of

an element x in an SSet is the number of elements in the SSet that are less than x.)

Exercise 4.10. A finger in a skiplist is an array that stores the sequence of nodes on a

search path at which the search path goes down. (The variable stack in the add(x) code on

page 80 is a finger; the shaded nodes in Figure 4.3 show the contents of the finger.) One

can think of a finger as pointing out the path to a node in the lowest list, L0.

91

4. Skiplists 4.5. Discussion and Exercises

A finger search implements the find(x) operation using a finger, by walking up

the list using the finger until reaching a node u such that u.x < x and u.next = null or

u.next.x > x and then performing a normal search for x starting from u. It is possible to

prove that the expected number of steps required for a finger search is O(1 + logr), where

r is the number values in L0 between x and the value pointed to by the finger.

Implement a subclass of Skiplist called SkiplistWithFinger that does all find(x)

operations using an internal finger. This class stores a finger and does every search as a

finger search. During the search it also updates the finger so that each find(x) operation

uses, as a starting point, a finger that points to the result of the previous find(x) operation.

Exercise 4.11. Write a method, truncate(i), that truncates a SkiplistList at position i.

After the execution of this method, the size of the list is i and it contains only the elements

at indices 0, . . . ,i−1. The return value is another SkiplistList that contains the elements

at indices i, . . . ,n− 1. This method should run in O(logn) time.

Exercise 4.12. Write a SkiplistList method, absorb(l2), that takes as an argument a

SkiplistList, l2, empties it and appends its contents, in order, to the receiver. For ex-

ample, if l1 contains a,b,c and l2 contains d,e, f , then after calling l1.absorb(l2), l1 will

contain a,b,c,d,e, f and l2 will be empty. This method should run in O(logn) time.

Exercise 4.13. Using the ideas from the space-efficient linked-list, SEList, design and im-

plement a space-efficient SSet, SESSet. Do this by storing the data, in order, in an SEList

and then storing the blocks of this SEList in an SSet. If the original SSet implementation

uses O(n) space to store n elements, then the SESSet will use enough space for n elements

plus O(n/b+ b) wasted space.

Exercise 4.14. Using an SSet as your underlying structure, design and implement an ap-

plication that reads a (large) text file and allow you to search, interactively, for any sub-

string contained in the text. As the user types their query, a matching part of the text (if

any) should appear as a result.

Hint 1: Every substring is a prefix of some suffix, so it suffices to store all suffixes of the

text file.

Hint 2: Any suffix can be represented compactly as a single integer indicating where the

suffix begins in the text.

Test your application on some large texts like some of the books available at Project Guten-

berg [1]. If done correctly, your applications will be very responsive; there should be no

noticeable lag between typing keystrokes and the results appearing.

92

4. Skiplists 4.5. Discussion and Exercises

Exercise 4.15. (This excercise is to be done after reading about binary search trees, in

Section 6.2.) Compare skiplists with binary search trees in the following ways:

1. Explain how removing some edges of a skiplist lead to a structure that looks like a

binary tree and that is similar to a binary search tree.

2. Skiplists and binary search trees each use about the same number of pointers (2 per

node). Skiplists make better use of those pointers, though. Explain why.

93

4. Skiplists 4.5. Discussion and Exercises

94

Chapter 5

Hash Tables

Hash tables are an efficient method of storing a small number, n, of integers from a large

range U = {0, . . . ,2w − 1}. The term hash table includes a broad range of data structures.

This chapter focuses on one of the most common implementations of hash tables, namely

hashing with chaining.

Very often hash tables store data that are not integers. In this case, an integer hash

code is associated with each data item and this hash code is used in the hash table. The

second part of this chapter discusses how such hash codes are generated.

Some of the methods used in this chapter require random choices of integers in

some specific range. In the code samples, some of these “random” integers are hard-coded

constants. These constants were obtained using random bits generated from atmospheric

noise.

5.1 ChainedHashTable: Hashing with Chaining

A ChainedHashTable data structure uses hashing with chaining to store data as an array, t,

of lists. An integer, n, keeps track of the total number of items in all lists (see Figure 5.1):

ChainedHashTable
List<T>[] t;
int n;

The hash value of a data item x, denoted hash(x) is a value in the range {0, . . . ,t.length−1}.
All items with hash value i are stored in the list at t[i]. To ensure that lists don’t get too

long, we maintain the invariant

n ≤ t.length

so that the average number of elements stored in one of these lists is n/t.length ≤ 1.

95

5. Hash Tables 5.1. ChainedHashTable: Hashing with Chaining

b d

c

i x h j

g

a

f m

e

` k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15t

Figure 5.1: An example of a ChainedHashTable with n = 14 and t.length = 16. In this

example hash(x) = 6

To add an element, x, to the hash table, we first check if the length of t needs to be

increased and, if so, we grow t. With this out of the way we hash x to get an integer, i, in

the range {0, . . . ,t.length− 1} and we append x to the list t[i]:
ChainedHashTable

boolean add(T x) {
if (find(x) != null) return false;
if (n+1 > t.length) resize();
t[hash(x)].add(x);
n++;
return true;

}

Growing the table, if necessary, involves doubling the length of t and reinserting all el-

ements into the new table. This is exactly the same strategy used in the implementation

of ArrayStack and the same result applies: The cost of growing is only constant when

amortized over a sequence of insertions (see Lemma 2.1 on page 31).

Besides growing, the only other work done when adding x to a ChainedHashTable

involves appending x to the list t[hash(x)]. For any of the list implementations described

in Chapters 2 or 3, this takes only constant time.

To remove an element x from the hash table we iterate over the list t[hash(x)] until

we find x so that we can remove it:
ChainedHashTable

T remove(T x) {
Iterator<T> it = t[hash(x)].iterator();
while (it.hasNext()) {

T y = it.next();
if (y.equals(x)) {
it.remove();
n--;
return y;

96

5. Hash Tables 5.1. ChainedHashTable: Hashing with Chaining

}
}
return null;

}

This takes O(nhash(x)) time, where ni denotes the length of the list stored at t[i].

Searching for the element x in a hash table is similar. We perform a linear search

on the list t[hash(x)]:

ChainedHashTable
T find(Object x) {
for (T y : t[hash(x)])

if (y.equals(x))
return y;

return null;
}

Again, this takes time proportional to the length of the list t[hash(x)].

The performance of a hash table depends critically on the choice of the hash func-

tion. A good hash function will spread the elements evenly among the t.length lists, so

that the expected size of the list t[hash(x)] is O(n/t.length) = O(1). On the other hand, a

bad hash function will hash all values (including x) to the same table location, in which

case the size of the list t[hash(x)] will be n. In the next section we describe a good hash

function.

5.1.1 Multiplicative Hashing

Multiplicative hashing is an efficient method of generating hash values based on modular

arithmetic (discussed in Section 2.3) and integer division. It uses the div operator, which

calculates the integral part of a quotient, while discarding the remainder. Formally, for

any integers a ≥ 0 and b ≥ 1, adivb = ba/bc.
In multiplicative hashing, we use a hash table of size 2d for some integer d (called

the dimension). The formula for hashing an integer x ∈ {0, . . . ,2w − 1} is

hash(x) = ((z · x) mod 2w)div2w−d .

Here, z is a randomly chosen odd integer in {1, . . . ,2w − 1}. This hash function can be real-

ized very efficiently by observing that, by default, operations on integers are already done

modulo 2w where w is the number of bits in an integer. (See Figure 5.2.) Furthermore,

97

5. Hash Tables 5.1. ChainedHashTable: Hashing with Chaining

2w (4294967296) 100000000000000000000000000000000

z (4102541685) 11110100100001111101000101110101

x (42) 00000000000000000000000000101010

z · x 10100000011110010010000101110100110010

(z · x) mod 2w 00011110010010000101110100110010

((z · x) mod 2w)div2w−d 00011110

Figure 5.2: The operation of the multiplicative hash function with w = 32 and d = 8.

integer division by 2w−d is equivalent to dropping the rightmost w− d bits in a binary rep-

resentation (which is implemented by shifting the bits right by w−d). In this way, the code

that implements the above formula is simpler than the formula itself:

ChainedHashTable
int hash(Object x) {
return (z * x.hashCode()) >>> (w-d);

}

The following lemma, whose proof is deferred until later in this section, shows that

multiplicative hashing does a good job of avoiding collisions:

Lemma 5.1. Let x and y be any two values in {0, . . . ,2w − 1} with x , y. Then Pr{hash(x) =

hash(y)} ≤ 2/2d.

With Lemma 5.1, the performance of remove(x), and find(x) are easy to analyze:

Lemma 5.2. For any data value x, the expected length of the list t[hash(x)] is at most nx + 2,

where nx is the number of occurrences of x in the hash table.

Proof. Let S be the (multi-)set of elements stored in the hash table that are not equal to x.

For an element y ∈ S, define the indicator variable

Iy =


1 if hash(x) = hash(y)

0 otherwise

and notice that, by Lemma 5.1, E[Iy] ≤ 2/2d = 2/t.length. The expected length of the list

98

5. Hash Tables 5.1. ChainedHashTable: Hashing with Chaining

t[hash(x)] is given by

E[t[hash(x)].size()] = E


nx +

∑

y∈S
Iy




= nx +
∑

y∈S
E[Iy]

≤ nx +
∑

y∈S
2/t.length

≤ nx +
∑

y∈S
2/n

≤ nx + (n− nx)2/n

≤ nx + 2 ,

as required.

Now, we want to prove Lemma 5.1, but first we need a result from number theory.

In the following proof, we use the notation (br , . . . , b0)2 to denote
∑r
i=0 bi2

i , where each bi is

a bit, either 0 or 1. In other words, (br , . . . , b0)2 is the integer whose binary representation

is given by br , . . . ,b0. We use ? to denote a bit of unknown value.

Lemma 5.3. Let S be the set of odd integers in {1, . . . ,2w−1}, Let q and i be any two elements in

S. Then there is exactly one value z ∈ S such that zq mod 2w = i.

Proof. Since the number of choices for z and i is the same, it is sufficient to prove that there

is at most one value z ∈ S that satisfies zq mod 2w = i.

Suppose, for the sake of contradiction, that there are two such values z and z′, with

z > z′. Then

zq mod 2w = z′q mod 2w = i

So

(z− z′)q mod 2w = 0

But this means that

(z− z′)q = k2w (5.1)

for some integer k. Thinking in terms of binary numbers, we have

(z− z′)q = k · (1,0, . . . ,0︸ ︷︷ ︸
w

)2 ,

so that the w trailing bits in the binary representation of (z− z′)q are all 0’s.

99

5. Hash Tables 5.1. ChainedHashTable: Hashing with Chaining

Furthermore k , 0 since q , 0 and z− z′ , 0. Since q is odd, it has no trailing 0’s in

its binary representation:

q = (?, . . . ,?,1)2 .

Since |z− z′ | < 2w, z− z′ has fewer than w trailing 0’s in its binary representation:

z− z′ = (?, . . . ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

Therefore, the product (z− z′)q has fewer than w trailing 0’s in its binary representation:

(z− z′)q = (?, · · · ,?,1,0, . . . ,0︸ ︷︷ ︸
<w

)2 .

Therefore (z− z′)q cannot satisfy (5.1), yielding a contradiction and completing the proof.

The utility of Lemma 5.3 comes from the following observation: If z is chosen

uniformly at random from S, then zt is uniformly distributed over S. In the following

proof, it helps to think of the binary representation of z, which consists of w − 1 random

bits followed by a 1.

Proof of Lemma 5.1. First we note that the condition hash(x) = hash(y) is equivalent to the

statement “the highest-order d bits of zx mod 2w and the highest-order d bits of zy mod 2w

are the same.” A necessary condition of that statement is that the highest-order d bits in

the binary representation of z(x− y) mod 2w are either all 0’s or all 1’s. That is,

z(x− y) mod 2w = (0, . . . ,0︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 (5.2)

when zx mod 2w > zy mod 2w or

z(x− y) mod 2w = (1, . . . ,1︸ ︷︷ ︸
d

,?, . . . ,?︸ ︷︷ ︸
w−d

)2 . (5.3)

when zx mod 2w < zy mod 2w. Therefore, we only have to bound the probability that z(x−
y) mod 2w looks like (5.2) or (5.3).

Let q be the unique odd integer such that (x−y) mod 2w = q2r for some integer r ≥ 0.

By Lemma 5.3, the binary representation of zq mod 2w has w− 1 random bits, followed by

a 1:

zq mod 2w = (bw−1, . . . , b1︸ ︷︷ ︸
w−1

,1)2

100

5. Hash Tables 5.2. LinearHashTable: Linear Probing

Therefore, the binary representation of z(x−y) mod 2w = zq2r mod 2w has w− r −1 random

bits, followed by a 1, followed by r 0’s:

z(x− y) mod 2w = zq2r mod 2w = (bw−r−1, . . . , b1︸ ︷︷ ︸
w−r−1

,1,0,0, . . . ,0︸ ︷︷ ︸
r

)2

We can now finish the proof: If r > w − d, then the d higher order bits of z(x − y) mod 2w

contain both 0’s and 1’s, so the probability that z(x − y) mod 2w looks like (5.2) or (5.3) is

0. If r = w− d, then the probability of looking like (5.2) is 0, but the probability of looking

like (5.3) is 1/2d−1 = 2/2d (since we must have b1, . . . , bd−1 = 1, . . . ,1). If r < w − d then we

must have bw−r−1, . . . , bw−r−d = 0, . . . ,0 or bw−r−1, . . . , bw−r−d = 1, . . . ,1. The probability of each

of these cases is 1/2d and they are mutually exclusive, so the probability of either of these

cases is 2/2d. This completes the proof.

5.1.2 Summary

The following theorem summarizes the performance of the ChainedHashTable data struc-

ture:

Theorem 5.1. A ChainedHashTable implements the USet interface. Ignoring the cost of calls

to grow(), a ChainedHashTable supports the operations add(x), remove(x), and find(x) in

O(1) expected time per operation.

Furthermore, beginning with an empty ChainedHashTable, any sequence of m add(x)

and remove(x) operations results in a total of O(m) time spent during all calls to grow().

5.2 LinearHashTable: Linear Probing

The ChainedHashTable data structure uses an array of lists, where the ith list stores all

elements x such that hash(x) = i. An alternative, called open addressing is to store the

elements directly in an array, t, with each array location in t storing at most one value.

This is the approach taken by the LinearHashTable described in this section. In some

places, this data structure is described as open addressing with linear probing.

The main idea behind a LinearHashTable is that we would, ideally, like to store

the element x with hash value i = hash(x) in the table location t[i]. If we can’t do this

(because some element is already stored there) then we try to store it at location t[(i +

1) mod t.length]; if that’s not possible, then we try t[(i + 2) mod t.length], and so on,

until we find a place for x.

There are three types of entries stored in t:

101

5. Hash Tables 5.2. LinearHashTable: Linear Probing

1. data values: actual values in the USet that we are representing;

2. null values: at array locations where no data has ever been stored; and

3. del values: at array locations where data was once stored but that has since been

deleted.

In addition to the counter, n, that keeps track of the number of elements in the Linear-

HashTable, a counter, q, keeps track of the number of elements of Types 1 and 3. That is,

q is equal to n plus the number of del values in t. To make this work efficiently, we need t

to be considerably larger than q, so that there are lots of null values in t. The operations

on a LinearHashTable therefore maintain the invariant that t.length ≥ 2q.

To summarize, a LinearHashTable contains an array, t, that stores data elements,

and integers n and q that keep track of the number of data elements and non-null values

of t, respectively. Because many hash functions only work for table sizes that are a power

of 2, we also keep an integer d and maintain the invariant that t.length = 2d.

LinearHashTable
T[] t; // the table
int n; // the size
int d; // t.length = 2ˆd
int q; // number of non-null entries in t

The find(x) operation in a LinearHashTable is simple. We start at array entry t[i]

where i = hash(x) and search entries t[i], t[(i+1) mod t.length], t[(i+2) mod t.length],

and so on, until we find an index i′ such that, either, t[i′] = x, or t[i′] = null. In the former

case we return t[i′]. In the latter case, we conclude that x is not contained in the hash table

and return null.
LinearHashTable

T find(T x) {
int i = hash(x);
while (t[i] != null) {

if (t[i] != del && x.equals(t[i])) return t[i];
i = (i == t.length-1) ? 0 : i + 1; // increment i (mod t.length)

}
return null;

}

The add(x) operation is also fairly easy to implement. After checking that x is

not already stored in the table (using find(x)), we search t[i], t[(i + 1) mod t.length],

102

5. Hash Tables 5.2. LinearHashTable: Linear Probing

t[(i+ 2) mod t.length], and so on, until we find a null or del and store x at that location,

increment n, and q, if appropriate.:
LinearHashTable

boolean add(T x) {
if (find(x) != null) return false;
if (2*(q+1) > t.length) resize(); // max 50% occupancy
int i = hash(x);
while (t[i] != null && t[i] != del)

i = (i == t.length-1) ? 0 : i + 1; // increment i (mod t.length)
if (t[i] == null) q++;
n++;
t[i] = x;
return true;

}

By now, the implementation of the remove(x) operation should be obvious. We

search t[i], t[(i + 1) mod t.length], t[(i + 2) mod t.length], and so on until we find an

index i′ such that t[i′] = x or t[i′] = null. In the former case, we set t[i′] = del and return

true. In the latter case we conclude that x was not stored in the table (and therefore cannot

be deleted) and return false.
LinearHashTable

T remove(T x) {
int i = hash(x);
while (t[i] != null) {

T y = t[i];
if (y != del && x.equals(y)) {
t[i] = del;
n--;
if (8*n < t.length) resize(); // min 12.5% occupancy
return y;

}
i = (i == t.length-1) ? 0 : i + 1; // increment i (mod t.length)

}
return null;

}

The correctness of the find(x), add(x), and remove(x) methods is easy to verify,

though it relies on the use of del values. Notice that none of these operations ever sets

a non-null entry to null. Therefore, when we reach an index i′ such that t[i′] = null,

this is a proof that the element, x, that we are searching for is not stored in the table; t[i′]
has always been null, so there is no reason that a previous add(x) operation would have

proceeded beyond index i′.

103

5. Hash Tables 5.2. LinearHashTable: Linear Probing

The resize() method is called by add(x) when the number of non-null entries

exceeds n/2 or by remove(x) when the number of data entries is less than t.length/8. The

resize() method works like the resize() methods in other array-based data structures.

We find the smallest non-negative integer d such that 2d ≥ 3n. We reallocate the array t

so that it has size 2d and then we insert all the elements in the old version of t into the

newly-resized copy of t. While doing this we reset q equal to n since the newly-allocated

t has no del values.
LinearHashTable

void resize() {
d = 1;
while ((1<<d) < 3*n) d++;
T[] told = t;
t = newArray(1<<d);
q = n;
// insert everything in told
for (int k = 0; k < told.length; k++) {

if (told[k] != null && told[k] != del) {
int i = hash(told[k]);
while (t[i] != null)
i = (i == t.length-1) ? 0 : i + 1;

t[i] = told[k];
}

}
}

5.2.1 Analysis of Linear Probing

Notice that each operation, add(x), remove(x), or find(x), finishes as soon as (or before) it

discovers the first null entry in t. The intuition behind the analysis of linear probing is

that, since at least half the elements in t are equal to null, an operation should not take

long to complete because it will very quickly come across a null entry. We shouldn’t rely

too heavily on this intuition though, because it would lead us to (the incorrect) conclusion

that the expected number of locations in t examined by an operation is at most 2.

For the rest of this section, we will assume that all hash values are independently

and uniformly distributed in {0, . . . ,t.length− 1}. This is not a realistic assumption, but it

will make it possible for us to analyze linear probing. Later in this section we will describe

a method, called tabulation hashing, that produces a hash function that is “good enough”

for linear probing. We will also assume that all indices into the positions of t are taken

modulo t.length, so that t[i] is really a shorthand for t[i mod t.length].

We say that a run of length k that starts at i occurs when t[i],t[i+ 1], . . . ,t[i+ k −1]

104

5. Hash Tables 5.2. LinearHashTable: Linear Probing

are all non-null and t[i − 1] = t[i + k] = null. The number of non-null elements of t

is exactly q and the add(x) method ensures that, at all times, q ≤ t.length/2. There are q

elements x1, . . . ,xq that have been inserted into t since the last rebuild() operation. By our

assumption, each of these has a hash value, hash(xj), that is uniform and independent of

the rest. With this setup, we can prove the main lemma required to analyze linear probing.

Lemma 5.4. Fix a value i ∈ {0, . . . ,t.length − 1}. Then the probability that a run of length k

starts at i is O(ck) for some constant 0 < c < 1.

Proof. If a run of length k starts at i, then there are exactly k elements xj such that

hash(xj) ∈ {i, . . . ,i+ k − 1}. The probability that this occurs is exactly

pk =
(
q
k

)(
k

t.length

)k (t.length− k
t.length

)q−k
,

since, for each choice of k elements, these k elements must hash to one of the k locations

and the remaining q− k elements must hash to the other t.length− k table locations.1

In the following derivation we will cheat a little and replace r! with (r/e)r . Stirling’s

Approximation (Section 1.2.2) shows that this is only a factor of O(
√
r) from the truth.

This is just done to make the derivation simpler; Exercise 5.4 asks the reader to redo the

calculation more rigorously using Stirling’s Approximation in its entirety.

The value of pk is maximized when t.length is minimum, and the data structure

maintains the invariant that t.length ≥ 2q, so

pk ≤
(
q
k

)(
k

2q

)k (2q− k
2q

)q−k

=
(

q!
(q− k)!k!

)(
k

2q

)k (2q− k
2q

)q−k

≈
(

qq

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k
[Stirling’s approximation]

=
(

qkqq−k

(q− k)q−kkk

)(
k

2q

)k (2q− k
2q

)q−k

=
(
qk

2qk

)k (q(2q− k)
2q(q− k)

)q−k

=
(1

2

)k ((2q− k)
2(q− k)

)q−k

1Note that pk is greater than the probability that a run of length k starts at i, since the definition of pk does

not include the requirement t[i− 1] = t[i+ k] = null.

105

5. Hash Tables 5.2. LinearHashTable: Linear Probing

=
(1

2

)k (
1 +

k
2(q− k)

)q−k

≤
(√
e

2

)k
.

(In the last step, we use the inequality (1 + 1/x)x ≤ e, which holds for all x > 0.) Since√
e/2 < 0.824360636 < 1, this completes the proof.

Using Lemma 5.4 to prove upper-bounds on the expected running time of find(x),

add(x), and remove(x) is now fairly straight-forward. Consider the simplest case, where we

execute find(x) for some value x that has never been stored in the LinearHashTable. In

this case, i = hash(x) is a random value in {0, . . . ,t.length−1} independent of the contents

of t. If i is part of a run of length k then the time it takes to execute the find(x) operation

is at most O(1 + k). Thus, the expected running time can be upper-bounded by

O


1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

kPr{i is part of a run of length k}

 .

Note that each run of length k contributes to the inner sum k times for a total contribution

of k2, so the above sum can be rewritten as

O


1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

k2 Pr{i starts a run of length k}



≤O

1 +

(1
t.length

)t.length∑

i=1

∞∑

k=0

k2pk




=O


1 +

∞∑

k=0

k2pk




=O


1 +

∞∑

k=0

k2 ·O(ck)




=O(1) .

The last step in this derivation comes from the fact that
∑∞
k=0 k

2 ·O(ck) is an exponentially

decreasing series.2 Therefore, we conclude that the expected running time of the find(x)

operation for a value x that is not contained in a LinearHashTable is O(1).

If we ignore the cost of the resize() operation, the above analysis gives us all we

need to analyze the cost of operations on a LinearHashTable.

2In the terminology of many calculus texts, this sum passes the ratio test: There exists a positive integer k0

such that, for all k ≥ k0, (k+1)2ck+1

k2ck
< 1.

106

5. Hash Tables 5.2. LinearHashTable: Linear Probing

First of all, the analysis of find(x) given above applies to the add(x) operation when

x is not contained in the table. To analyze the find(x) operation when x is contained in

the table, we need only note that this is the same as the cost of the add(x) operation that

previously added x to the table. Finally, the cost of a remove(x) operation is the same as

the cost of a find(x) operation.

In summary, if we ignore the cost of calls to resize(), all operations on a Linear-

HashTable run in O(1) expected time. Accounting for the cost of resize can be done using

the same type of amortized analysis performed for the ArrayStack data structure in Sec-

tion 2.1.

5.2.2 Summary

The following theorem summarizes the performance of the LinearHashTable data struc-

ture:

Theorem 5.2. A LinearHashTable implements the USet interface. Ignoring the cost of calls

to resize(), a LinearHashTable supports the operations add(x), remove(x), and find(x) in

O(1) expected time per operation.

Furthermore, beginning with an empty LinearHashTable, any sequence of m add(x)

and remove(x) operations results in a total of O(m) time spent during all calls to resize().

5.2.3 Tabulation Hashing

While analyzing the LinearHashTable structure, we made a very strong assumption: That

for any set of elements, {x1, . . . ,xn}, the hash values hash(x1), . . . ,hash(xn) are independently

and uniformly distributed over {0, . . . ,t.length− 1}. One way to imagine getting this is to

have a giant array, tab, of length 2w, where each entry is a random w-bit integer, indepen-

dent of all the other entries. In this way, we could implement hash(x) by extracting a d-bit

integer from tab[x.hashCode()]:
LinearHashTable

int idealHash(T x) {
return tab[x.hashCode() >>> w-d];

}

Unfortunately, storing an array of size 2w is prohibitive in terms of memory usage.

The approach used by tabulation hashing is to, instead, treat w-bit integers as being com-

prised of w/r integers, each having only r bits. In this way, tabulation hashing only needs

w/r arrays each of length 2r. All the entries in these arrays are independent w-bit inte-

gers. To obtain the value of hash(x) we split x.hashCode() up into w/r r-bit integers and

107

5. Hash Tables 5.3. Hash Codes

use these as indices into these arrays. We then combine all these values with the bitwise

exclusive-or operator to obtain hash(x). The following code shows how this works when

w = 32 and r = 4:
LinearHashTable

int hash(T x) {
int h = x.hashCode();
return (tab[0][h&0xff]

ˆ tab[1][(h>>>8)&0xff]
ˆ tab[2][(h>>>16)&0xff]
ˆ tab[3][(h>>>24)&0xff])

>>> (w-d);
}

In this case, tab is a 2-dimensional array with 4 columns and 232/4 = 256 rows.

One can easily verify that, for any x, hash(x) is uniformly distributed over {0, . . . ,2d−
1}. With a little work, one can even verify that any pair of values have independent hash

values. This implies tabulation hashing could be used in place of multiplicative hashing

for the ChainedHashTable implementation.

However, it is not true that any set of n distinct values gives a set of n independent

hash values. Nevertheless, when tabulation hashing is used, the bound of Theorem 5.2

still holds. References for this are provided at the end of this chapter.

5.3 Hash Codes

The hash tables discussed in the previous section are used to associate data with integer

keys consisting of w bits. In many cases, we have keys that are not integers. They may be

strings, objects, arrays, or other compound structures. To use hash tables for these types

of data, we must map these data types to w-bit hash codes. Hash code mappings should

have the following properties:

1. If x and y are equal, then x.hashCode() and y.hashCode() are equal.

2. If x and y are not equal, then the probability that x.hashCode() = y.hashCode() should

be small (close to 1/2w).

The first property ensures that if we store x in a hash table and later look up a

value y equal to x, then we will find x—as we should. The second property minimizes the

loss from converting our objects to integers. It ensures that unequal objects usually have

different hash codes and so are likely to be stored at different locations in our hash table.

108

5. Hash Tables 5.3. Hash Codes

5.3.1 Hash Codes for Primitive Data Types

Small primitive data types like char, byte, int, and float are usually easy to find hash

codes for. These data types always have a binary representation and this binary represen-

tation usually consists of w or fewer bits. (For example, in Java, byte is an 8-bit type and

float is a 32-bit type.) In these cases, we just treat these bits as the representation of an

integer in the range {0, . . . ,2w −1}. If two values are different, they get different hash codes.

If they are the same, they get the same hash code.

A few primitive data types are made up of more than w bits, usually cw bits for

some constant integer c. (Java’s long and double types are examples of this with c = 2.)

These data types can be treated as compound objects made of c parts, as described in the

next section.

5.3.2 Hash Codes for Compound Objects

For a compound object, we want to create a hash code by combining the individual hash

codes of the object’s constituent parts. This is not as easy as it sounds. Although one can

find many hacks for this (for example, combining the hash codes with bitwise exclusive-or

operations), many of these hacks turn out to be easy to foil (see Exercises 5.7–5.9). How-

ever, if one is willing to do arithmetic with 2w bits of precision, then there are simple and

robust methods available. Suppose we have an object made up of several parts P0, . . . , Pr−1

whose hash codes are x0, . . . ,xr−1. Then we can choose mutually independent random w-bit

integers z0, . . . ,zr−1 and a random 2w-bit odd integer z and compute a hash code for our

object with

h(x0, . . . ,xr−1) =





z

r−1∑

i=0

zixi


 mod 22w


div2w .

Note that this hash code has a final step (multiplying by z and dividing by 2w) that uses

the multiplicative hash function from Section 5.1.1 to take the 2w-bit intermediate result

and reduce it to a w-bit final result. Here is an example of this method applied to a simple

compound object with 3 parts x0, x1, and x2:
Point3D

int hashCode() {
long[] z = {0x2058cc50L, 0xcb19137eL, 0x2cb6b6fdL}; // random
long zz = 0xbea0107e5067d19dL; // random

long h0 = x0.hashCode() & ((1L<<32)-1); // unsigned int to long
long h1 = x1.hashCode() & ((1L<<32)-1);
long h2 = x2.hashCode() & ((1L<<32)-1);

109

5. Hash Tables 5.3. Hash Codes

return (int)(((z[0]*h0 + z[1]*h1 + z[2]*h2)*zz) >>> 32);
}

The following theorem shows that, in addition to being straightforward to implement, this

method is provably good:

Theorem 5.3. Let x0, . . . ,xr−1 and y0, . . . ,yr−1 each be sequences of w bit integers in {0, . . . ,2w−1}
and assume xi , yi for at least one index i ∈ {0, . . . , r − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ 3/2w .

Proof. We will first ignore the final multiplicative hashing step and see how that step con-

tributes later. Define:

h′(x0, . . . ,xr−1) =



r−1∑

j=0

zjxj


 mod 22w .

Suppose that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1). We can rewrite this as:

zi(xi − yi) mod 22w = t (5.4)

where

t =



i−1∑

j=0

zj(yj − xj) +
r−1∑

j=i+1

zj(yj − xj)

 mod 22w

If we assume, without loss of generality that xi > yi , then (5.4) becomes

zi(xi − yi) = t , (5.5)

since each of zi and (xi−yi) is at most 2w−1, so their product is at most 22w−2w+1+1 < 22w−1.

By assumption, xi − yi , 0, so (5.5) has at most one solution in zi . Therefore, since zi and

t are independent (z0, . . . ,zr−1 are mutually independent), the probability that we select zi
so that h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) is at most 1/2w.

The final step of the hash function is to apply multiplicative hashing to reduce

our 2w-bit intermediate result h′(x0, . . . ,xr−1) to a w-bit final result h(x0, . . . ,xr−1). By Theo-

rem 5.3, if h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1), then Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ 2/2w.

110

5. Hash Tables 5.3. Hash Codes

To summarize,

Pr


h(x0, . . . ,xr−1)

= h(y0, . . . ,yr−1)



= Pr



h′(x0, . . . ,xr−1) = h′(y0, . . . ,yr−1) or

h′(x0, . . . ,xr−1) , h′(y0, . . . ,yr−1)

and zh′(x0, . . . ,xr−1)div2w = zh′(y0, . . . ,yr−1)div2w



≤ 1/2w + 2/2w = 3/2w .

5.3.3 Hash Codes for Arrays and Strings

The method from the previous section works well for objects that have a fixed, constant,

number of components. However, it breaks down when we want to use it with objects

that have a variable number of components since it requires a random w-bit integer zi for

each component. We could use a pseudorandom sequence to generate as many zi ’s as we

need, but then the zi ’s are not mutually independent, and it becomes difficult to prove that

the pseudorandom numbers don’t interact badly with the hash function we are using. In

particular, the values of t and zi in the proof of Theorem 5.3 are no longer independent.

A more rigorous approach is to base our hash codes on polynomials over prime

fields; these are just regular polynomials that are evaluated modulo some prime number,

p. This method is based on the following theorem, which says that polynomials over prime

fields behave pretty-much like usual polynomials:

Theorem 5.4. Let p be a prime number, and let f (z) = x0z
0 + x1z

1 + · · · + xr−1z
r−1 be a non-

trivial polynomial with coefficients xi ∈ {0, . . . ,p− 1}. Then the equation f (z) mod p = 0 has at

most r − 1 solutions for z ∈ {0, . . . ,p − 1}.

To use Theorem 5.4, we hash a sequence of integers x0, . . . ,xr−1 with each xi ∈
{0, . . . ,p− 2} using a random integer z ∈ {0, . . . ,p− 1} via the formula

h(x0, . . . ,xr−1) =
(
x0z

0 + · · ·+ xr−1z
r−1 + (p− 1)zr

)
mod p .

Note the extra (p − 1)zr term at the end of the formula. It helps to think of (p − 1)

as the last element, xr , in the sequence x0, . . . ,xr . Note that this element differs from every

other element in the sequence (each of which is in the set {0, . . . ,p − 2}). We can think of

p− 1 as an end-of-sequence marker.

The following theorem, which considers the case of two sequences of the same

length, shows that this hash function gives a good return for the small amount of random-

ization needed to choose z:

111

5. Hash Tables 5.3. Hash Codes

Theorem 5.5. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr−1 each be sequences of

w-bit integers in {0, . . . ,2w − 1}, and assume xi , yi for at least one index i ∈ {0, . . . , r − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤ (r − 1)/p} .

Proof. The equation h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1) can be rewritten as

(
(x0 − y0)z0 + · · ·+ (xr−1 − yr−1)zr−1

)
mod p = 0. (5.6)

Since xi , yi, this polynomial is non-trivial. Therefore, by Theorem 5.4, it has at most r−1

solutions in z. The probability that we pick z to be one of these solutions is therefore at

most (r − 1)/p.

Note that this hash function also deals with the case in which two sequences have

different lengths, even when one of the sequences is a prefix of the other. This is because

this function effectively hashes the infinite sequence

x0, . . . ,xr−1,p− 1,0,0,

This guarantees that if we have two sequences of length r and r ′ with r > r ′, then these two

sequences differ at index i = r. In this case, (5.6) becomes


i=r ′−1∑

i=0

(xi − yi)zi + (xr ′ − p+ 1)zr
′
+
i=r−1∑

i=r ′+1

xiz
i + (p− 1)zr


 mod p = 0 ,

which, by Theorem 5.4, has at most r solutions in z. This combined with Theorem 5.5

suffice to prove the following more general theorem:

Theorem 5.6. Let p > 2w + 1 be a prime, let x0, . . . ,xr−1 and y0, . . . ,yr ′−1 be distinct sequences of

w-bit integers in {0, . . . ,2w − 1}. Then

Pr{h(x0, . . . ,xr−1) = h(y0, . . . ,yr−1)} ≤max{r, r ′}/p .

The following example code shows how this hash function is applied to an object

that contains an array, x, of values:
GeomVector

int hashCode() {
long p = (1L<<32)-5; // prime: 2ˆ32 - 5
long z = 0x64b6055aL; // 32 bits from random.org
int z2 = 0x5067d19d; // random odd 32 bit number
long s = 0;
long zi = 1;

112

5. Hash Tables 5.4. Discussion and Exercises

for (int i = 0; i < x.length; i++) {
long xi = (x[i].hashCode() * z2) >>> 1; // reduce to 31 bits
s = (s + zi * xi) % p;
zi = (zi * z) % p;

}
s = (s + zi * (p-1)) % p;
return (int)s;

}

The above code sacrifices some collision probability for implementation conve-

nience. In particular, it applies the multiplicative hash function from Section 5.1.1, with

d = 31 to reduce x[i].hashCode() to a 31-bit value. This is so that the additions and mul-

tiplications that are done modulo the prime p = 232 − 5 can be carried out using unsigned

63-bit arithmetic. This means that the probability of two different sequences, the longer

of which has length r, having the same hash code is at most

2/231 + r/(232 − 5)

rather than the r/(232 − 5) specified in Theorem 5.6.

5.4 Discussion and Exercises

Hash tables and hash codes are an enormous and active area of research that is just touched

upon in this chapter. The online Bibliography on Hashing [10] contains nearly 2000 en-

tries.

A variety of different hash table implementations exist. The one described in Sec-

tion 5.1 is known as hashing with chaining (each array entry contains a chain (List) of

elements). Hashing with chaining dates back to an internal IBM memorandum authored

by H. P. Luhn and dated January 1953. This memorandum also seems to be one of the

earliest references to linked lists.

An alternative to hashing with chaining is that used by open addressing schemes,

where all data is stored directly in an array. These schemes include the LinearHashTable

structure of Section 5.2. This idea was also proposed, independently, by a group at IBM

in the 1950s. Open addressing schemes must deal with the problem of collision resolution:

the case where two values hash to the same array location. Different strategies exist for

collision resolution and these provide different performance guarantees and often require

more sophisticated hash functions than the ones described here.

Yet another category of hash table implementations are the so-called perfect hashing

methods. These are methods in which find(x) operations takeO(1) time in the worst-case.

113

5. Hash Tables 5.4. Discussion and Exercises

For static data sets, this can be accomplished by finding perfect hash functions for the data;

these are functions that map each piece of data to a unique array location. For data that

changes over time, perfect hashing methods include FKS two-level hash tables [29, 24] and

cuckoo hashing [57].

The hash functions presented in this chapter are probably among the most practi-

cal currently known methods that can be proven to work well for any set of data. Other

provably good methods date back to the pioneering work of Carter and Wegman who in-

troduced the notion of universal hashing and described several hash functions for different

scenarios [14]. Tabulation hashing, described in Section 5.2.3, is due to Carter and Weg-

man [14], but its analysis, when applied to linear probing (and several other hash table

schemes) is due to Pǎtraşcu and Thorup [62].

The idea of multiplicative hashing is very old and seems to be part of the hashing

folklore [48, Section 6.4]. However, the idea of choosing the multiplier z to be a random

odd number, and the analysis in Section 5.1.1 is due to Dietzfelbinger et al. [23]. This

version of multiplicative hashing is one of the simplest, but its collision probability of 2/2d

is a factor of 2 larger than what one could expect with a random function from 2w → 2d.

The multiply-add hashing method uses the function

h(x) = ((zx+ b) mod 22w)div22w−d

where z and b are each randomly chosen from {0, . . . ,22w − 1}. Multiply-add hashing has a

collision probability of only 1/2d [21], but requires 2w-bit precision arithmetic.

There are a number of methods of obtaining hash codes from fixed-length se-

quences of w-bit integers. One particularly fast method [11] is the function

h(x0, . . . ,xr−1) =



r/2−1∑

i=0

((x2i + a2i) mod 2w)((x2i+1 + a2i+1) mod 2w)


 mod 22w

where r is even and a0, . . . ,ar−1 are randomly chosen from {0, . . . ,2w}. This yields a 2w-bit

hash code that has collision probability 1/2w. This can be reduced to a w-bit hash code

using multiplicative (or multiply-add) hashing. This method is fast because it requires

only r/2 2w-bit multiplications whereas the method described in Section 5.3.2 requires r

multiplications. (The mod operations occur implicitly by using w and 2w-bit arithmetic

for the additions and multiplications, respectively.)

The method from Section 5.3.3 of using polynomials over prime fields to hash

variable-length arrays and strings is due to Dietzfelbinger et al. [22]. It is, unfortunately,

not very fast. This is due to its use of the mod operator which relies on a costly machine

114

5. Hash Tables 5.4. Discussion and Exercises

instruction. Some variants of this method choose the prime p to be one of the form 2w−1, in

which case the mod operator can be replaced with addition (+) and bitwise-and (&) opera-

tions [47, Section 3.6]. Another option is to apply one of the fast methods for fixed-length

strings to blocks of length c for some constant c > 1 and then apply the prime field method

to the resulting sequence of dr/ce hash codes.

Exercise 5.1. A certain university assigns each of its students student numbers the first

time they register for any course. These numbers are sequential integers that started at

0 many years ago and are now in the millions. Suppose we have a class of 100 first year

students and we want to assign them hash codes based on their student numbers. Does it

make more sense to use the first two digits or the last two digits of their student number?

Justify your answer.

Exercise 5.2. Consider the multiplicative hashing scheme in Section 5.1.1, and suppose

n = 2d and d ≤ w/2.

1. Show that, for any choice of the muliplier, z, there exists n values that all have the

same hash code. (Hint: This is easy, and doesn’t require any number theory.)

2. Given the multiplier, z, describe n values that all have the same hash code. (Hint:

This is harder, and requires some basic number theory.)

Exercise 5.3. Prove that the bound 2/2d in Lemma 5.1 is the best possible by showing

that, if x = 2w−d−2 and y = 3x, then Pr{hash(x) = hash(y)} = 2/2d. (Hint look at the binary

representations of zx and z3x and use the fact that z3x = zx+2zx.)

Exercise 5.4. Reprove Lemma 5.4 using the full version of Stirling’s Approximation given

in Section 1.2.2.

Exercise 5.5. Consider the following the simplified version of the code for adding an ele-

ment x to a LinearHashTable, which simply stores x in the first null array entry it finds.

Explain why this could be very slow by giving an example of a sequence of O(n) add(x),

remove(x), and find(x) operations that would take on the order of n2 time to execute.
LinearHashTable

boolean addSlow(T x) {
if (2*(q+1) > t.length) resize(); // max 50% occupancy
int i = hash(x);
while (t[i] != null) {

if (t[i] != del && x.equals(t[i])) return false;
i = (i == t.length-1) ? 0 : i + 1; // increment i (mod t.length)

115

5. Hash Tables 5.4. Discussion and Exercises

}
t[i] = x;
n++; q++;
return true;

}

Exercise 5.6. Early versions of the Java hashCode() method for the String class worked by

not using all characters of long strings. For example, for a 16 character string, the hash

code was computed using only the 8 even-indexed characters. Explain why this was a very

bad idea by Giving an example of large set of strings that all have the same hash code.

Exercise 5.7. Suppose you have an object made up of two w-bit integers, x and y. Show

why x⊕ y does not make a good hash code for your object. Give an example of a large set

of objects that would all have hash code 0.

Exercise 5.8. Suppose you have an object made up of two w-bit integers, x and y. Show

why x+ y does not make a good hash code for your object. Give an example of a large set

of objects that would all have the same hash code.

Exercise 5.9. Suppose you have an object made up of two w-bit integers, x and y. Suppose

that the hash code for your object is defined by some deterministic function h(x,y) that

produces a single w-bit integer. Prove that there exists a large set of objects that have the

same hash code.

Exercise 5.10. Let p = 2w−1 for some positive integer w. Explain why, for a positive integer

x

(x mod 2w) + (xdiv2w) ≡ x mod (2w − 1) .

(This gives an algorithm for computing x mod (2w − 1) by repeatedly setting

x = x&((1<<w)− 1) + x>>>w

until x ≤ 2w − 1.)

Exercise 5.11. Find some commonly-used hash table implementation (The Java Collection

Framework HashMap or the HashTable or LinearHashTable implementations in this book,

for example) and design a program that stores integers in this data structure so that there

are integers, x, such that find(x) takes linear time. That is, find a set of n integers for

which there are cn elements that hash to the same table location.

Depending on how good the implementation is, you may be able to do this just by

inspecting the code for the implementation, or you may have to write some code that does

116

5. Hash Tables 5.4. Discussion and Exercises

trial insertions and searches, timing how long it takes to add and find particular values.

(This can be, and has been, used to launch denial of service attacks on web servers [17].)

117

5. Hash Tables 5.4. Discussion and Exercises

118

Chapter 6

Binary Trees

This chapter introduces one of the most fundamental structures in computer science: bi-

nary trees. The use of the word tree here comes from the fact that, when we draw them, the

resulting drawing often resembles the trees we find in a forest. There are lots of ways of

defining binary trees. Mathematically, a binary tree is a connected undirected finite graph

with no cycles, and no vertex of degree greater than three.

For most computer science applications, binary trees are rooted: A special node,

r, of degree at most two is called the root of the tree. For every node, u , r, the second

node on the path from u to r is called the parent of u. Each of the other nodes adjacent

to u is called a child of u. Most of the binary trees we are interested in are ordered, so we

distinguish between the left child and right child of u.

In illustrations, binary trees are usually drawn from the root downward, with the

root at the top of the drawing and the left and right children respectively given by left and

right positions in the drawing (Figure 6.1). A binary tree with nine nodes is drawn this

way in Figure 6.2.a.

u

u.parent

u.left u.right

Figure 6.1: The parent, left child, and right child of the node u in a BinaryTree.

119

6. Binary Trees 6.1. BinaryTree: A Basic Binary Tree

r r

(a) (b)

Figure 6.2: A binary tree with (a) nine real nodes and (b) ten external nodes.

Binary trees are so important that a terminology has developed around them: The

depth of a node, u, in a binary tree is the length of the path from u to the root of the tree.

If a node, w, is on the path from u to r then w is called an ancestor of u and u a descendant

of w. The subtree of a node, u, is the binary tree that is rooted at u and contains all of u’s

descendants. The height of a node, u, is the length of the longest path from u to one of its

descendants. The height of a tree is the height of its root. A node, u, is a leaf if it has no

children.

We sometimes think of the tree as being augmented with external nodes. Any node

that does not have a left child has an external node as its left child and any node that does

not have a right child has an external node as its right child (see Figure 6.2.b). It is easy to

verify, by induction, that a binary tree having n ≥ 1 real nodes has n+ 1 external nodes.

6.1 BinaryTree: A Basic Binary Tree

The simplest way to represent a node, u, in a binary tree is to store the (at most three)

neighbours of u explicitly:

BinaryTree
class BTNode<Node extends BTNode<Node>> {
Node left;
Node right;
Node parent;

}

When one of these three neighbours is not present, we set it to nil. In this way, external

nodes in the tree as well as the parent of the root correspond to the value nil.

The binary tree itself can then be represented by a reference to its root node, r:

120

6. Binary Trees 6.1. BinaryTree: A Basic Binary Tree

BinaryTree
Node r;

We can compute the depth of a node, u, in a binary tree by counting the number of

steps on the path from u to the root:
BinaryTree

int depth(Node u) {
int d = 0;
while (u != r) {

u = u.parent;
d++;

}
return d;

}

6.1.1 Recursive Algorithms

It is very easy to compute facts about binary trees using recursive algorithms. For example,

to compute the size of (number of nodes in) a binary tree rooted at node u, we recursively

compute the sizes of the two subtrees rooted at the children of u, sum these sizes, and add

one:

BinaryTree
int size(Node u) {
if (u == nil) return 0;
return 1 + size(u.left) + size(u.right);

}

To compute the height of a node u we can compute the height of u’s two subtrees,

take the maximum, and add one:

BinaryTree
int height(Node u) {
if (u == nil) return -1;
return 1 + Math.max(height(u.left), height(u.right));

}

6.1.2 Traversing Binary Trees

The two algorithms from the previous section use recursion to visit all the nodes in a

binary tree. Each of them visits the nodes of the binary tree in the same order as the

following code:

121

6. Binary Trees 6.1. BinaryTree: A Basic Binary Tree

BinaryTree
void traverse(Node u) {
if (u == nil) return;
traverse(u.left);
traverse(u.right);

}

Using recursion this way produces very short, simple code, but can be problematic.

The maximum depth of the recursion is given by the maximum depth of a node in the

binary tree, i.e., the tree’s height. If the height of the tree is very large, then this could very

well use more stack space than is available, causing a crash.

Luckily, traversing a binary tree can be done without recursion. This is done using

an algorithm that uses where it came from to decide where it will go next. See Figure 6.3.

If we arrive at a node u from u.parent, then the next thing to do is to visit u.left. If we

arrive at u from u.left, then the next thing to do is to visit u.right. If we arrive at u from

u.right, then we are done visiting u’s subtree, so we return to u.parent. The following

code implements this idea, with code included for handling the cases where any of u.left,

u.right, or u.parent is nil:
BinaryTree

void traverse2() {
Node u = r, prev = nil, next;
while (u != nil) {

if (prev == u.parent) {
if (u.left != nil) next = u.left;
else if (u.right != nil) next = u.right;
else next = u.parent;

} else if (prev == u.left) {
if (u.right != nil) next = u.right;
else next = u.parent;

} else {
next = u.parent;

}
prev = u;
u = next;

}
}

The same things that can be computed with recursive algorithms can also be done

this way. For example, to compute the size of the tree we keep a counter, n, and increment

n whenever visiting a node for the first time:

122

6. Binary Trees 6.1. BinaryTree: A Basic Binary Tree

u

u.parent

u.left u.right

r

Figure 6.3: The three cases that occur at node u when traversing a binary tree non-

recursively, and the resulting traversal of the tree.

BinaryTree
int size2() {
Node u = r, prev = nil, next;
int n = 0;
while (u != nil) {

if (prev == u.parent) {
n++;
if (u.left != nil) next = u.left;
else if (u.right != nil) next = u.right;
else next = u.parent;

} else if (prev == u.left) {
if (u.right != nil) next = u.right;
else next = u.parent;

} else {
next = u.parent;

}
prev = u;
u = next;

}
return n;

}

In some implementations of binary trees, the parent field is not used. When this is

the case, a non-recursive implementation is still possible, but the implementation has to

use a List (or Stack) to keep track of the path from the current node to the root.

A special kind of traversal that does not fit the pattern of the above functions is

the breadth-first traversal. In a breadth-first traversal, the nodes are visited level-by-level

starting at the root and working our way down, visiting the nodes at each level from left

123

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

r

Figure 6.4: During a breadth-first traversal, the nodes of a binary tree are visited level-by-

level, and left-to-right within each level.

to right. This is similar to the way we would read a page of English text. (See Figure 6.4.)

This is implemented using a queue, q, that initially contains only the root, r. At each step,

we extract the next node, u, from q, process u and add u.left and u.right (if they are

non-nil) to q:
BinaryTree

void bfTraverse() {
Queue<Node> q = new LinkedList<Node>();
if (r != nil) q.add(r);
while (!q.isEmpty()) {

Node u = q.remove();
if (u.left != nil) q.add(u.left);
if (u.right != nil) q.add(u.right);

}
}

6.2 BinarySearchTree: An Unbalanced Binary Search Tree

A BinarySearchTree is a special kind of binary tree in which each node, u, also stores a

data value, u.x, from some total order. The data values in a binary search tree obey the

binary search tree property: For a node, u, every data value stored in the subtree rooted

at u.left is less than u.x and every data value stored in the subtree rooted at u.right is

greater than u.x. An example of a BinarySearchTree is shown in Figure 6.5.

6.2.1 Searching

The binary search tree property is extremely useful because it allows us to quickly locate

a value, x, in a binary search tree. To do this we start searching for x at the root, r. When

examining a node, u, there are three cases:

124

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

1

3

4

5

6

7

8 12 14

139

11

Figure 6.5: A binary search tree.

1. If x < u.x then the search proceeds to u.left;

2. If x > u.x then the search proceeds to u.right;

3. If x = u.x then we have found the node u containing x.

The search terminates when Case 3 occurs or when u = nil. In the former case, we found

x. In the latter case, we conclude that x is not in the binary search tree.
BinarySearchTree

T findEQ(T x) {
Node u = r;
while (u != nil) {

int comp = compare(x, u.x);
if (comp < 0)
u = u.left;

else if (comp > 0)
u = u.right;

else
return u.x;

}
return null;

}

Two examples of searches in a binary search tree are shown in Figure 6.6. As the

second example shows, even if we don’t find x in the tree, we still gain some valuable

information. If we look at the last node, u, at which Case 1 occurred, we see that u.x is the

smallest value in the tree that is greater than x. Similarly, the last node at which Case 2

occurred contains the largest value in the tree that is less than x. Therefore, by keeping

125

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

1

3

4

5

6

7

8 12 14

139

11

1

3

4

5

6

7

8 12 14

139

11

(a) (b)

Figure 6.6: An example of (a) a successful search (for 6) and (b) an unsuccessful search

(for 10) in a binary search tree.

track of the last node, z, at which Case 1 occurs, a BinarySearchTree can implement the

find(x) operation that returns the smallest value stored in the tree that is greater than or

equal to x:
BinarySearchTree

T find(T x) {
Node w = r, z = nil;
while (w != nil) {

int comp = compare(x, w.x);
if (comp < 0) {
z = w;
w = w.left;

} else if (comp > 0) {
w = w.right;

} else {
return w.x;

}
}
return z == nil ? null : z.x;

}

6.2.2 Addition

To add a new value, x, to a BinarySearchTree, we first search for x. If we find it, then there

is no need to insert it. Otherwise, we store x at a leaf child of the last node, p, encountered

during the search for x. Whether the new node is the left or right child of p depends on

the result of comparing x and p.x.

126

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

BinarySearchTree
boolean add(T x) {
Node p = findLast(x);
return addChild(p, newNode(x));

}

BinarySearchTree
Node findLast(T x) {
Node w = r, prev = nil;
while (w != nil) {

prev = w;
int comp = compare(x, w.x);
if (comp < 0) {
w = w.left;

} else if (comp > 0) {
w = w.right;

} else {
return w;

}
}
return prev;

}

BinarySearchTree
boolean addChild(Node p, Node u) {
if (p == nil) {

r = u; // inserting into empty tree
} else {

int comp = compare(u.x, p.x);
if (comp < 0) {
p.left = u;

} else if (comp > 0) {
p.right = u;

} else {
return false; // u.x is already in the tree

}
u.parent = p;

}
n++;
return true;

}

An example is shown in Figure 6.7. The most time-consuming part of this process is the

initial search for x, which takes time proportional to the height of the newly added node

u. In the worst case, this is equal to the height of the BinarySearchTree.

127

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

1

3

4

5

6

7

8 12 14

139

11

1

3

4

5

6

7

8 12 14

139

11

8.5

Figure 6.7: Inserting the value 8.5 into a binary search tree.

6.2.3 Removal

Deleting a value stored in a node, u, of a BinarySearchTree is a little more difficult. If u is

a leaf, then we can just detach u from its parent. Even better: If u has only one child, then

we can splice u from the tree by having u.parent adopt u’s child (see Figure 6.8):

BinarySearchTree
void splice(Node u) {
Node s, p;
if (u.left != nil) {

s = u.left;
} else {

s = u.right;
}
if (u == r) {

r = s;
p = nil;

} else {
p = u.parent;
if (p.left == u) {
p.left = s;

} else {
p.right = s;

}
}
if (s != nil) {

s.parent = p;
}
n--;

}

128

6. Binary Trees 6.2. BinarySearchTree: An Unbalanced Binary Search Tree

1

3

4

5

6

7

8 12 14

139

11

Figure 6.8: Removing a leaf (6) or a node with only one child (9) is easy.

1

3

4

5

6

7

8 12 14

139

11

1

3

4

5

6

7

8 14

139

12

Figure 6.9: Deleting a value (11) from a node, u, with two children is done by replacing u’s

value with the smallest value in the right subtree of u.

Things get tricky, though, when u has two children. In this case, the simplest thing

to do is to find a node, w, that has less than two children such that we can replace u.x with

w.x. To maintain the binary search tree property, the value w.x should be close to the value

of u.x. For example, picking w such that w.x is the smallest value greater than u.x will do.

Finding the node w is easy; it is the smallest value in the subtree rooted at u.right. This

node can be easily removed because it has no left child. (See Figure 6.9)

BinarySearchTree
void remove(Node u) {
if (u.left == nil || u.right == nil) {

splice(u);
} else {

Node w = u.right;
while (w.left != nil)
w = w.left;

u.x = w.x;
splice(w);

}
}

129

6. Binary Trees 6.3. Discussion and Exercises

6.2.4 Summary

The find(x), add(x), and remove(x) operations in a BinarySearchTree each involve follow-

ing a path from the root of the tree to some node in the tree. Without knowing more about

the shape of the tree it is difficult to say much about the length of this path, except that

it is less than n, the number of nodes in the tree. The following (unimpressive) theorem

summarizes the performance of the BinarySearchTree data structure:

Theorem 6.1. A BinarySearchTree implements the SSet interface. A BinarySearchTree

supports the operations add(x), remove(x), and find(x) in O(n) time per operation.

Theorem 6.1 compares poorly with Theorem 4.1, which shows that the SkiplistS-

Set structure can implement the SSet interface withO(logn) expected time per operation.

The problem with the BinarySearchTree structure is that it can become unbalanced. In-

stead of looking like the tree in Figure 6.5 it can look like a long chain of n nodes, all but

the last having exactly one child.

There are a number of ways of avoiding unbalanced binary search trees, all of

which lead to data structures that have O(logn) time operations. In Chapter 7 we show

how O(logn) expected time operations can be achieved with randomization. In Chapter 8

we show how O(logn) amortized time operations can be achieved with partial rebuilding

operations. In Chapter 9 we show how O(logn) worst-case time operations can be achieved

by simulating a tree that is not binary: a tree in which nodes can have up to four children.

6.3 Discussion and Exercises

Binary trees have been used to model relationships for literally thousands of years. One

reason for this is that binary trees naturally model (pedigree) family trees. These are the

family trees in which the root is a person, the left and right children are the person’s

parents, and so on, recursively. In more recent centuries binary trees have also been used

to model species-trees in biology, where the leaves of the tree represent extant species and

the internal nodes of the tree represent speciation events in which two populations of a

single species evolve into two separate species.

Binary search trees appear to have been discovered independently by several groups

in the 1950s [48, Section 6.2.2]. Further references to specific kinds of binary search trees

are provided in subsequent chapters.

When implementing a binary tree from scratch, there are several design decisions

to be made. One of these is the question of whether or not each node stores a pointer to

130

6. Binary Trees 6.3. Discussion and Exercises

its parent. If most of the operations simply follow a root-to-leaf path, then parent pointers

are unnecessary, and are a potential source of coding errors. On the other hand, the lack of

parent pointers means that tree traversals must be done recursively or with the use of an

explicit stack. Some other methods (like inserting or deleting into some kinds of balanced

binary search trees) are also complicated by the lack of parent pointers.

Another design decision is concerned with how to store the parent, left child, and

right child pointers at a node. In the implementation given here, they are stored as sep-

arate variables. Another option is to store them in an array, p, of length 3, so that u.p[0]

is the left child of u, u.p[1] is the right child of u, and u.p[2] is the parent of u. Using an

array this way means that some sequences of if statements can be simplified into algebraic

expressions.

An example of such a simplification occurs during tree traversal. If a traversal

arrives at a node u from u.p[i], then the next node in the traversal is u.p[(i + 1) mod 3].

Similar examples occur when there is left-right symmetry. For example, the sibling of

u.p[i] is u.p[(i+ 1) mod 2]. This works whether u.p[i] is a left child (i = 0) or a right child

(i = 1) of u. In some cases this means that some complicated code that would otherwise

need to have both a left version and right version can be written only once. See the methods

rotateLeft(u) and rotateRight(u) on page 143 for an example.

Exercise 6.1. Prove that a binary tree having n ≥ 1 nodes has n− 1 edges.

Exercise 6.2. Prove that a binary tree having n ≥ 1 real nodes has n+ 1 external nodes.

Exercise 6.3. Prove that, if a binary tree, T , has at least one leaf, then either (a) T ’s root

has at most one child or (b) T has more than one leaf.

Exercise 6.4. Write a non-recursive variant of the size2() method, size(u), that computes

the size of the subtree rooted at node u.

Exercise 6.5. Write a non-recursive method, height2(u), that computes the height of node

u in a BinaryTree.

Exercise 6.6. A binary tree is balanced if, for every node u, the size of the subtrees rooted

at u.left and u.right differ by at most one. Write a recursive method, isBalanced(), that

tests if a binary tree is balanced. Your method should run in O(n) time. (Be sure to test

your code on some large trees with different shapes; it is easy to write a method that takes

much longer than O(n) time.)

131

6. Binary Trees 6.3. Discussion and Exercises

2

1

4

3

5

0

8 10 11

97

6

0

4

1

3

2

11

5 7 8

96

10

0

1

2

3

4

5

6 9 11

107

8

Figure 6.10: Pre-order, post-order, and in-order numberings of a binary tree.

A pre-order traversal of a binary tree is a traversal that visits each node, u, before

any of its children. An in-order traversal visits u after visiting all the nodes in u’s left

subtree but before visiting any of the nodes in u’s right subtree. A post-order traversal

visits u only after visiting all other nodes in u’s subtree. The pre/in/post-order numbering

of a tree labels the nodes of a tree with the integers 0, . . . ,n − 1 in the order that they are

encountered by a pre/in/post-order traversal. See Figure 6.10 for an example.

Exercise 6.7. Create a subclass of BinaryTree whose nodes have fields for storing pre-

order, post-order, and in-order numbers. Write recursive methods preOrderNumber(),

inOrderNumber(), and postOrderNumbers() that assign these numbers correctly. These

methods should each run in O(n) time.

Exercise 6.8. Write non-recursive functions nextPreOrder(u), nextInOrder(u), and nextPostOrder(u)

that return the node that follows u in a pre-order, in-order, or post-order traversal, respec-

tively. These functions should take amortized constant time; if we start at any node u and

repeatedly call one of these functions and assign the return value to u until u = null, then

the cost of all these calls should be O(n).

Exercise 6.9. Suppose we are given a binary tree with pre- post- and in-order numbers as-

signed to the nodes. Show how these numbers can be used to answer each of the following

questions in constant time:

132

6. Binary Trees 6.3. Discussion and Exercises

1. Given a node u, determine the size of the subtree rooted at u.

2. Given a node u, determine the depth of u.

3. Given two nodes u and w, determine if u is an ancestor of w

Exercise 6.10. Suppose you are given a list of nodes with pre-order and in-order num-

bers assigned. Prove that there is at most one possible tree with this pre-order/in-order

numbering and show how to construct it.

Exercise 6.11. Show that the shape of any binary tree on n nodes can be represented using

at most 2(n − 1) bits. (Hint: think about recording what happens during a traversal and

then playing back that recording to reconstruct the tree.)

Exercise 6.12. Illustrate what happens when we add the values 3.5 and then 4.5 to the

binary search tree in Figure 6.5.

Exercise 6.13. Illustrate what happens when we remove the values 3 and then 5 from the

binary search tree in Figure 6.5.

Exercise 6.14. Design and implement a method BinarySearchTree method getLE(x), that

returns a list of all items in the tree that are less than or equal to x. The running time of

your method should be O(n′ + h) where n′ is the number of items less than or equal to x

and h is the height of the tree.

Exercise 6.15. Describe how to add the elements {1, . . . ,n} to an initially empty Binary-

SearchTree in such a way that the resulting tree has height n − 1. How many ways are

there to do this?

Exercise 6.16. If we have some BinarySearchTree and perform the operations add(x) fol-

lowed by remove(x) (with the same value of x) do we necessarily return to the original

tree?

Exercise 6.17. Can a remove(x) operation increase the height of any node in a Binary-

SearchTree? If so, by how much?

Exercise 6.18. Can an add(x) operation increase the height of any node in a BinarySearch-

Tree? Can it increase the height of the tree? If so, by how much?

Exercise 6.19. Design and implement a version of BinarySearchTree in which each node,

u, maintains values u.size (the size of the subtree rooted at u), u.depth (the depth of u),

and u.height (the height of the subtree rooted at u).

133

6. Binary Trees 6.3. Discussion and Exercises

These values should be maintained, even during the add(x) and remove(x) opera-

tions, but this should not increase the cost of these operations by more than a constant

factor.

134

Chapter 7

Random Binary Search Trees

In this chapter, we present a binary search tree structure that uses randomization to

achieve O(logn) expected time for all operations.

7.1 Random Binary Search Trees

Consider the two binary search trees shown in Figure 7.1. The one on the left is a list and

the other is a perfectly balanced binary search tree. The one on the left has height n−1 = 14

and the one on the right has height three.

Imagine how these two trees could have been constructed. The one on the left

occurs if we start with an empty BinarySearchTree and add the sequence

〈0,1,2,3,4,5,6,7,8,9,10,11,12,13,14〉 .

No other sequence of additions will create this tree (as you can prove by induction on n).

On the other hand, the tree on the right can be created by the sequence

〈7,3,11,1,5,9,13,0,2,4,6,8,10,12,14〉 .

Other sequences work as well, including

〈7,3,1,5,0,2,4,6,11,9,13,8,10,12,14〉 ,

and

〈7,3,1,11,5,0,2,4,6,9,13,8,10,12,14〉 .
In fact, there are 21,964,800 addition sequences that generate the tree on the right and

only one that generates the tree on the left.

The above example gives some anecdotal evidence that, if we choose a random

permutation of 0, . . . ,14, and add it into a binary search tree then we are more likely to get

135

7. Random Binary Search Trees 7.1. Random Binary Search Trees

0

1

2

3

. . .

14 0

1

2

3

4

5

6

7

8 10 12 14

139

11

Figure 7.1: Two binary search trees containing the integers 0, . . . ,14.

a very balanced tree (the right side of Figure 7.1) than we are to get a very unbalanced tree

(the left side of Figure 7.1).

We can formalize this notion by studying random binary search trees. A random

binary search tree of size n is obtained in the following way: Take a random permutation,

x0, . . . ,xn−1, of the integers 0, . . . ,n − 1 and add its elements, one by one, into a Binary-

SearchTree. By random permutation we mean that each of the possible n! permutations

(orderings) of 0, . . . ,n− 1 is equally likely, so that the probability of obtaining any particu-

lar permutation is 1/n!.

Note that the values 0, . . . ,n− 1 could be replaced by any ordered set of n elements

without changing any of the properties of the random binary search tree. The element

x ∈ {0, . . . ,n− 1} is simply standing in for the element of rank x in an ordered set of size n.

Before we can present our main result about random binary search trees, we must

take some time for a short digression to discuss a type of number that comes up frequently

when studying randomized structures. For a non-negative integer, k, the k-th harmonic

number, denoted Hk , is defined as

Hk = 1 + 1/2 + 1/3 + · · ·+ 1/k .

The harmonic number Hk has no simple closed form, but it is very closely related to the

natural logarithm of k. In particular,

lnk < Hk ≤ lnk + 1 .

Readers who have studied calculus might notice that this is because the integral
∫ k

1 (1/x)dx =

lnk. Keeping in mind that an integral can be interpreted as the area between a curve and

136

7. Random Binary Search Trees 7.1. Random Binary Search Trees

1

1/2

1/3

1/k

...

1 2 30 k. . .

f (x) = 1/x

1

1/2

1/3

1/k

...

1 2 3 k. . .

Figure 7.2: The kth harmonic number Hk =
∑k
i=1 1/i is upper-bounded by 1 +

∫ k
1 (1/x)dx

and lower-bounded by
∫ k

1 (1/x)dx. The value of
∫ k

1 (1/x)dx is given by the area of the shaded

region, while the value of Hk is given by the area of the rectangles.

the x-axis, the value of Hk can be lower-bounded by the integral
∫ k

1 (1/x)dx and upper-

bounded by 1 +
∫ k

1 (1/x)dx. (See Figure 7.2 for a graphical explanation.)

Lemma 7.1. In a random binary search tree of size n, the following statements hold:

1. For any x ∈ {0, . . . ,n−1}, the expected length of the search path for x isHx+1+Hn−x−O(1).1

2. For any x ∈ (−1,n)\{0, . . . ,n−1}, the expected length of the search path for x isHdxe+Hn−dxe.

We will prove Lemma 7.1 in the next section. For now, consider what the two parts

of Lemma 7.1 tell us. The first part tells us that if we search for an element in a tree of size

n, then the expected length of the search path is at most 2lnn+O(1). The second part tells

us the same thing about searching for a value not stored in the tree. When we compare the

two parts of the lemma, we see that it is only slightly faster to search for something that is

in the tree compared to something that is not in the tree.

7.1.1 Proof of Lemma 7.1

The key observation needed to prove Lemma 7.1 is the following: The search path for a

value x in the open interval (−1,n) in a random binary search tree, T , contains the node

with key i < x if and only if, in the random permutation used to create T , i appears before

any of {i + 1, i + 2, . . . ,bxc}.
1The expressions x+ 1 and n− x can be interpreted respectively as the number of elements in the tree less

than or equal to x and the number of elements in the tree greater than or equal to x.

137

7. Random Binary Search Trees 7.1. Random Binary Search Trees

. . . , i, . . . , j − 1 j +1, . . . ,bxc, . . .

j

Figure 7.3: The value i < x is on the search path for x if and only if i is the first element

among {i, i + 1, . . . ,bxc} added to the tree.

To see this, refer to Figure 7.3 and notice that, until some value in {i, i + 1, . . . ,bxc}
is added, the search paths for each value in the open interval (i − 1,bxc + 1) are identical.

(Remember that for two search values to have different search paths, there must be some

element in the tree that compares differently with them.) Let j be the first element in

{i, i + 1, . . . ,bxc} to appear in the random permutation. Notice that j is now and will always

be on the search path for x. If j , i then the node uj containing j is created before the node

ui that contains i. Later, when i is added, it will be added to the subtree rooted at uj .left,

since i < j. On the other hand, the search path for x will never visit this subtree because it

will proceed to uj .right after visiting uj .

Similarly, for i > x, i appears in the search path for x if and only if i appears before

any of {dxe,dxe+ 1, . . . , i − 1} in the random permutation used to create T .

Notice that, if we start with a random permutation of {0, . . . ,n}, then the subse-

quences containing only {i, i + 1, . . . ,bxc} and {dxe,dxe+ 1, . . . , i − 1} are also random permu-

tations of their respective elements. Each element, then, in the subsets {i, i + 1, . . . ,bxc} and

{dxe,dxe+1, . . . , i−1} is equally likely to appear before any other in its subset in the random

permutation used to create T . So we have

Pr{i is on the search path for x} =


1/(bxc − i + 1) if i < x

1/(i − dxe+ 1) if i > x
.

138

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

With this observation, the proof of Lemma 7.1 involves some simple calculations

with harmonic numbers:

Proof of Lemma 7.1. Let Ii be the indicator random variable that is equal to one when i

appears on the search path for x and zero otherwise. Then the length of the search path is

given by ∑

i∈{0,...,n−1}\{x}
Ii

so, if x ∈ {0, . . . ,n− 1}, the expected length of the search path is given by (see Figure 7.4.a)

E



x−1∑

i=0

Ii +
n−1∑

i=x+1

Ii


 =

x−1∑

i=0

E[Ii] +
n−1∑

i=x+1

E[Ii]

=
x−1∑

i=0

1/(bxc − i + 1) +
n−1∑

i=x+1

1/(i − dxe+ 1)

=
x−1∑

i=0

1/(x− i + 1) +
n−1∑

i=x+1

1/(i − x+ 1)

=
1
2

+
1
3

+ · · ·+ 1
x+ 1

+
1
2

+
1
3

+ · · ·+ 1
n− x

=Hx+1 +Hn−x − 2 .

The corresponding calculations for a search value x ∈ (−1,n) \ {0, . . . ,n−1} are almost iden-

tical (see Figure 7.4.b).

7.1.2 Summary

The following theorem summarizes the performance of a random binary search tree:

Theorem 7.1. A random binary search tree can be constructed in O(n logn) time. In a random

binary search tree, the find(x) operation takes O(logn) expected time.

We should emphasize again that the expectation in Theorem 7.1 is with respect to

the random permutation used to create the random binary search tree. In particular, it

does not depend on a random choice of x; it is true for every value of x.

7.2 Treap: A Randomized Binary Search Tree

The problem with random binary search trees is, of course, that they are not dynamic.

They don’t support the add(x) or remove(x) operations needed to implement the SSet in-

139

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

0 1 x− 1 x x+1 n− 1

1
2

1
2

1
3

1
3

1
x+1

1
x

1
n−x· · ·· · ·

· · · · · ·i

Pr{Ii = 1}

(a)

0 1 bxc dxe n− 1

1 1
2

1
2

1
3

1
bxc+1

1
bxc

1
n−bxc· · ·· · ·

· · · · · ·i

Pr{Ii = 1} 1
3 1

(b)

Figure 7.4: The probabilities of an element being on the search path for x when (a) x is an

integer and (b) when x is not an integer.

terface. In this section we describe a data structure called a Treap that uses Lemma 7.1 to

implement the SSet interface.2

A node in a Treap is like a node in a BinarySearchTree in that it has a data value,

x, but it also contains a unique numerical priority, p, that is assigned at random:

Treap
class Node<T> extends BinarySearchTree.BSTNode<Node<T>,T> {
int p;

}

In addition to being a binary search tree, the nodes in a Treap also obey the heap property:

• (Heap Property) At every node u, except the root, u.parent.p < u.p.

In other words, each node has a priority smaller than that of its two children. An example

is shown in Figure 7.5.

The heap and binary search tree conditions together ensure that, once the key (x)

and priority (p) for each node are defined, the shape of the Treap is completely determined.

The heap property tells us that the node with minimum priority has to be the root, r, of

the Treap. The binary search tree property tells us that all nodes with keys smaller than

r.x are stored in the subtree rooted at r.left and all nodes with keys larger than r.x are

stored in the subtree rooted at r.right.

2The names Treap comes from the fact that this data structure is simultaneously a binary search tree

(Section 6.2) and a heap (Chapter 10).

140

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,17

8,49

Figure 7.5: An example of a Treap containing the integers 0, . . . ,9. Each node, u, is illus-

trated as a box containing u.x,u.p.

The important point about the priority values in a Treap is that they are unique

and assigned at random. Because of this, there are two equivalent ways we can think

about a Treap. As defined above, a Treap obeys the heap and binary search tree properties.

Alternatively, we can think of a Treap as a BinarySearchTree whose nodes were added

in increasing order of priority. For example, the Treap in Figure 7.5 can be obtained by

adding the sequence of (x,p) values

〈(3,1), (1,6), (0,9), (5,11), (4,14), (9,17), (7,22), (6,42), (8,49), (2,99)〉

into a BinarySearchTree.

Since the priorities are chosen randomly, this is equivalent to taking a random

permutation of the keys — in this case the permutation is

〈3,1,0,5,9,4,7,6,8,2〉

— and adding these to a BinarySearchTree. But this means that the shape of a treap is

identical to that of a random binary search tree. In particular, if we replace each key x by

its rank,3 then Lemma 7.1 applies. Restating Lemma 7.1 in terms of Treaps, we have:

Lemma 7.2. In a Treap that stores a set S of n keys, the following statements hold:

1. For any x ∈ S, the expected length of the search path for x is Hr(x)+1 +Hn−r(x) −O(1).

2. For any x < S, the expected length of the search path for x is Hr(x) +Hn−r(x).

3The rank of an element x in a set S of elements is the number of elements in S that are less than x.

141

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

rotateRight(u) ⇒
⇐ rotateLeft(w)

A B

C

w

u

A

B C

u

w

Figure 7.6: Left and right rotations in a binary search tree.

Here, r(x) denotes the rank of x in the set S ∪ {x}.

Again, we emphasize that the expectation in Lemma 7.2 is taken over the random

choices of the priorities for each node. It does not require any assumptions about the

randomness in the keys.

Lemma 7.2 tells us that Treaps can implement the find(x) operation efficiently.

However, the real benefit of a Treap is that it can support the add(x) and delete(x) oper-

ations. To do this, it needs to perform rotations in order to maintain the heap property.

Refer to Figure 7.6. A rotation in a binary search tree is a local modification that takes a

parent u of a node w and makes w the parent of u, while preserving the binary search tree

property. Rotations come in two flavours: left or right depending on whether w is a right or

left child of u, respectively.

The code that implements this has to handle these two possibilities and be careful

of a boundary case (when u is the root) so the actual code is a little longer than Figure 7.6

would lead a reader to believe:
BinarySearchTree

void rotateLeft(Node u) {
Node w = u.right;
w.parent = u.parent;
if (w.parent != nil) {

if (w.parent.left == u) {
w.parent.left = w;

} else {
w.parent.right = w;

}
}
u.right = w.left;

142

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

if (u.right != nil) {
u.right.parent = u;

}
u.parent = w;
w.left = u;
if (u == r) { r = w; r.parent = nil; }

}
void rotateRight(Node u) {
Node w = u.left;
w.parent = u.parent;
if (w.parent != nil) {

if (w.parent.left == u) {
w.parent.left = w;

} else {
w.parent.right = w;

}
}
u.left = w.right;
if (u.left != nil) {

u.left.parent = u;
}
u.parent = w;
w.right = u;
if (u == r) { r = w; r.parent = nil; }

}

In terms of the Treap data structure, the most important property of a rotation is that the

depth of w decreases by one while the depth of u increases by one.

Using rotations, we can implement the add(x) operation as follows: We create a

new node, u, and assign u.x = x and pick a random value for u.p. Next we add u using the

usual add(x) algorithm for a BinarySearchTree, so that u is now a leaf of the Treap. At

this point, our Treap satisfies the binary search tree property, but not necessarily the heap

property. In particular, it may be the case that u.parent.p > u.p. If this is the case, then we

perform a rotation at node w=u.parent so that u becomes the parent of w. If u continues

to violate the heap property, we will have to repeat this, decreasing u’s depth by one every

time, until u either becomes the root or u.parent.p < u.p.
Treap

boolean add(T x) {
Node<T> u = newNode();
u.x = x;
u.p = rand.nextInt();
if (super.add(u)) {

143

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

bubbleUp(u);
return true;

}
return false;

}
void bubbleUp(Node<T> u) {
while (u.parent != nil && u.parent.p > u.p) {

if (u.parent.right == u) {
rotateLeft(u.parent);

} else {
rotateRight(u.parent);

}
}
if (u.parent == nil) {

r = u;
}

}

An example of an add(x) operation is shown in Figure 7.7.

The running time of the add(x) operation is given by the time it takes to follow

the search path for x plus the number of rotations performed to move the newly-added

node, u, up to its correct location in the Treap. By Lemma 7.2, the expected length of the

search path is at most 2lnn +O(1). Furthermore, each rotation decreases the depth of u.

This stops if u becomes the root, so the expected number of rotations cannot exceed the

expected length of the search path. Therefore, the expected running time of the add(x)

operation in a Treap is O(logn). (Exercise 7.5 asks you to show that the expected number

of rotations performed during an addition is actually only O(1).)

The remove(x) operation in a Treap is the opposite of the add(x) operation. We

search for the node, u, containing x and then perform rotations to move u downwards until

it becomes a leaf and then we splice u from the Treap. Notice that, to move u downwards,

we can perform either a left or right rotation at u, which will replace u with u.right or

u.left, respectively. The choice is made by the first of the following that apply:

1. If u.left and u.right are both null, then u is a leaf and no rotation is performed.

2. If u.left (or u.right) is null, then perform a right (or left, respectively) rotation at

u.

3. If u.left.p < u.right.p (or u.left.p > u.right.p), then perform a right rotation (or

left rotation, respectively) at u.

144

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

6,42

0,9

1,6 2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

Figure 7.7: Adding the value 1.5 into the Treap from Figure 7.5.

145

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

These three rules ensure that the Treap doesn’t become disconnected and that the heap

property is restored once u is removed.

Treap
boolean remove(T x) {
Node<T> u = findLast(x);
if (u != nil && compare(u.x, x) == 0) {

trickleDown(u);
splice(u);
return true;

}
return false;

}
void trickleDown(Node<T> u) {
while (u.left != nil || u.right != nil) {

if (u.left == nil) {
rotateLeft(u);

} else if (u.right == nil) {
rotateRight(u);

} else if (u.left.p < u.right.p) {
rotateRight(u);

} else {
rotateLeft(u);

}
if (r == u) {
r = u.parent;

}
}

}

An example of the remove(x) operation is shown in Figure 7.8.

The trick to analyze the running time of the remove(x) operation is to notice that

this operation is the reverse of the add(x) operation. In particular, if we were to reinsert x,

using the same priority u.p, then the add(x) operation would do exactly the same number

of rotations and would restore the Treap to exactly the same state it was in before the

remove(x) operation took place. (Reading from bottom-to-top, Figure 7.8 illustrates the

addition of the value 9 into a Treap.) This means that the expected running time of the

remove(x) on a Treap of size n is proportional to the expected running time of the add(x)

operation on a Treap of size n−1. We conclude that the expected running time of remove(x)

is O(logn).

146

7. Random Binary Search Trees 7.2. Treap: A Randomized Binary Search Tree

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

8,49

Figure 7.8: Removing the value 9 from the Treap in Figure 7.5.

147

7. Random Binary Search Trees 7.3. Discussion and Exercises

7.2.1 Summary

The following theorem summarizes the performance of the Treap data structure:

Theorem 7.2. A Treap implements the SSet interface. A Treap supports the operations add(x),

remove(x), and find(x) in O(logn) expected time per operation.

It is worth comparing the Treap data structure to the SkiplistSSet data structure.

Both implement the SSet operations in O(logn) expected time per operation. In both data

structures, add(x) and remove(x) involve a search and then a constant number of pointer

changes (see Exercise 7.5 below). Thus, for both these structures, the expected length of

the search path is the critical value in assessing their performance. In a SkiplistSSet, the

expected length of a search path is

2logn+O(1) ,

In a Treap, the expected length of a search path is

2lnn+O(1) ≈ 1.386logn+O(1) .

Thus, the search paths in a Treap are considerably shorter and this translates into notice-

ably faster operations on Treaps than Skiplists. Exercise 4.7 in Chapter 4 shows how the

expected length of the search path in a Skiplist can be reduced to

e lnn+O(1) ≈ 1.884logn+O(1)

by using biased coin tosses. Even with this optimization, the expected length of search

paths in a SkiplistSSet is noticeably longer than in a Treap.

7.3 Discussion and Exercises

Random binary search trees have been studied extensively. Devroye [19] gives a proof of

Lemma 7.1 and related results. There are much stronger results in the literature as well.

The most impressive of which is due to Reed [64], who shows that the expected height of

a random binary search tree is

α lnn− β lnlnn+O(1)

where α ≈ 4.31107 is the unique solution on [2,∞) of the equation α ln((2e/α)) = 1 and

β = 3
2ln(α/2) . Furthermore, the variance of the height is constant.

148

7. Random Binary Search Trees 7.3. Discussion and Exercises

The name Treap was coined by Aragon and Seidel [67] who discussed Treaps

and some of their variants. However, their basic structure was studied much earlier by

Vuillemin [74] who called them Cartesian trees.

One space-optimization of the Treap data structure that is sometimes performed is

the elimination of the explicit storage of the priority p in each node. Instead, the priority of

a node, u, is computed by hashing u’s address in memory (in 32-bit Java, this is equivalent

to hashing u.hashCode()). Although a number of hash functions will probably work well

for this in practice, for the important parts of the proof of Lemma 7.1 to remain valid, the

hash function should be randomized and have the min-wise independent property: For any

distinct values x1, . . . ,xk , each of the hash values h(x1), . . . ,h(xk) should be distinct with high

probability and, for each i ∈ {1, . . . , k},

Pr{h(xi) = min{h(x1), . . . ,h(xk)}} ≤ c/k

for some constant c. One such class of hash functions that is easy to implement and fairly

fast is tabulation hashing (Section 5.2.3).

Another Treap variant that doesn’t store priorities at each node is the randomized

binarysearch tree of Martı́nez and Roura [51]. In this variant, every node, u, stores the

size, u.size, of the subtree rooted at u. Both the add(x) and remove(x) algorithms are

randomized. The algorithm for adding x to the subtree rooted at u does the following:

1. With probability 1/(size(u)+1), x is added the usual way, as a leaf, and rotations are

then done to bring x up to the root of this subtree.

2. Otherwise, x is recursively added into one of the two subtrees rooted at u.left or

u.right, as appropriate.

The first case corresponds to an add(x) operation in a Treap where x’s node receives a

random priority that is smaller than any of the size(u) priorities in u’s subtree, and this

case occurs with exactly the same probability.

Removing a value x from a randomized binary search tree is similar to the process

of removing from a Treap. We find the node, u, that contains x and then perform rotations

that repeatedly increase the depth of u until it becomes a leaf, at which point we can splice

it from the tree. The choice of whether to perform a left or right rotation at each step is

randomized.

1. With probability u.left.size/(u.size− 1), we perform a right rotation at u, making

u.left the root of the subtree that was formerly rooted at u.

149

7. Random Binary Search Trees 7.3. Discussion and Exercises

2. With probability u.right.size/(u.size− 1), we perform a left rotation at u, making

u.right the root of the subtree that was formerly rooted at u.

Again, we can easily verify that these are exactly the same probabilities that the removal

algorithm in a Treap will perform a left or right rotation of u.

Randomized binary search trees have the disadvantage, compared to treaps, that

when adding and removing elements they make many random choices and they must

maintain the sizes of subtrees. One advantage of randomized binary search trees over

treaps is that subtree sizes can serve another useful purpose, namely to provide access by

rank in O(logn) expected time (see Exercise 7.10). In comparison, the random priorities

stored in treap nodes have no use other than keeping the treap balanced.

Exercise 7.1. Illustrate the addition of 4.5 (with priority 7) and then 7.5 (with priority 20)

on the Treap in Figure 7.5.

Exercise 7.2. Illustrate the removal of 5 and then 7 on the Treap in Figure 7.5.

Exercise 7.3. Prove the assertion that there are 21,964,800 sequences that generate the

tree on the right hand side of Figure 7.1. (Hint: Give a recursive formula for the number

of sequences that generate a complete binary tree of height h and evaluate this formula for

h = 3.)

Exercise 7.4. Design and implement the permute(a) method that takes as input an array,

a, containing n distinct values and randomly permutes a. The method should run in O(n)

time and you should prove that each of the n! possible permutations of a is equally proba-

ble.

Exercise 7.5. Use both parts of Lemma 7.2 to prove that the expected number of rotations

performed by an add(x) operation (and hence also a remove(x) operation) is O(1).

Exercise 7.6. Modify the Treap implementation given here so that it does not explicitly

store priorities. Instead, it should simulate them by hashing the hashCode() of each node.

Exercise 7.7. Suppose that a binary search tree stores, at each node, u, the height, u.height,

of the subtree rooted at u, and the size, u.size of the subtree rooted at u.

1. Show how, if we perform a left or right rotation at u, then these two quantities can

be updated, in constant time, for all nodes affected by the rotation.

2. Explain why the same result is not possible if we try to also store the depth, u.depth,

of each node u.

150

7. Random Binary Search Trees 7.3. Discussion and Exercises

Exercise 7.8. Design an implement an algorithm that constructs a Treap from a sorted ar-

ray, a, of n elements. This method should run inO(n) worst-case time and should construct

a Treap that is indistinguishable from one in which the elements of a were added one at a

time using the add(x) method.

Exercise 7.9. This exercise works out the details of how one can efficiently search a Treap

given a pointer that is close to the node we are searching for.

1. Design and implement a Treap implementation in which each node keeps track of

the minimum and maximum values in its subtree.

2. Using this extra information, add a fingerFind(x,u) method that executes the find(x)

operation with the help of a pointer to the node u (which is hopefully not far from

the node that contains x). This operation should start at u and walk upwards until

it reaches a node w such that w.min ≤ x ≤ w.max. From that point onwards, it should

perform a standard search for x starting from w. (One can show that fingerFind(x,u)

takes O(1+log r) time, where r is the number of elements in the treap whose value is

between x and u.x.)

3. Extend your implementation into a version of a treap that starts all its find(x) oper-

ations from the node most recently found by find(x).

Exercise 7.10. Design and implement a version of a Treap that includes a get(i) operation

that returns the key with rank i in the Treap. (Hint: Have each node, u, keep track of the

size of the subtree rooted at u.)

Exercise 7.11. Implement a TreapList, an implementation of the List interface as a treap.

Each node in the treap should store a list item, and an in-order traversal of the treap finds

the items in the same order that they occur in the list. All the List operations get(i),

set(i,x), add(i,x) and remove(i) should run in O(logn) expected time.

Exercise 7.12. Design and implement a version of a Treap that supports the split(x)

operation. This operation removes all values from the Treap that are greater than x and

returns a second Treap that contains all the removed values.

Example: the code t2 = t.split(x) removes from t all values greater than x and returns a

new Treap t2 containing all these values. The split(x) operation should run in O(logn)

expected time.

Warning: For this modification to work properly and still allow the size() method to run

in constant time, it is necessary to implement the modifications in Exercise 7.10.

151

7. Random Binary Search Trees 7.3. Discussion and Exercises

Exercise 7.13. Design and implement a version of a Treap that supports the absorb(t2)

operation, which can be thought of as the inverse of the split(x) operation. This opera-

tion removes all values from the Treap t2 and adds them to the receiver. This operation

presupposes that the smallest value in t2 is greater than the largest value in the receiver.

The absorb(t2) operation should run in O(logn) expected time.

Exercise 7.14. Implement Martinez’s randomized binary search trees, as discussed in this

section. Compare the performance of your implementation with that of the Treap imple-

mentation.

152

Chapter 8

Scapegoat Trees

In this chapter, we study a binary search tree data structure, the ScapegoatTree. This

structure is based on the common wisdom that, when something goes wrong, the first

thing we should do is find someone to blame it on (the scapegoat). Once blame is firmly

established, we can leave the scapegoat to fix the problem.

A ScapegoatTree keeps itself balanced by partial rebuilding operations. During a

partial rebuilding operation, an entire subtree is deconstructed and rebuilt into a perfectly

balanced subtree. There are many ways of rebuilding a subtree rooted at node u into

a perfectly balanced tree. One of the simplest is to traverse u’s subtree, gathering all its

nodes into an array a and then to recursively build a balanced subtree using a. If we let m =

a.length/2, then the element a[m] becomes the root of the new subtree, a[0], . . . ,a[m−1] get

stored recursively in the left subtree and a[m+ 1], . . . ,a[a.length− 1] get stored recursively

in the right subtree.
ScapegoatTree

void rebuild(Node<T> u) {
int ns = size(u);
Node<T> p = u.parent;
Node<T>[] a = (Node<T>[]) Array.newInstance(Node.class, ns);
packIntoArray(u, a, 0);
if (p == nil) {

r = buildBalanced(a, 0, ns);
r.parent = nil;

} else if (p.right == u) {
p.right = buildBalanced(a, 0, ns);
p.right.parent = p;

} else {
p.left = buildBalanced(a, 0, ns);
p.left.parent = p;

}
}

153

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

int packIntoArray(Node<T> u, Node<T>[] a, int i) {
if (u == nil) {

return i;
}
i = packIntoArray(u.left, a, i);
a[i++] = u;
return packIntoArray(u.right, a, i);

}
Node<T> buildBalanced(Node<T>[] a, int i, int ns) {
if (ns == 0)

return nil;
int m = ns / 2;
a[i + m].left = buildBalanced(a, i, m);
if (a[i + m].left != nil)

a[i + m].left.parent = a[i + m];
a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
if (a[i + m].right != nil)

a[i + m].right.parent = a[i + m];
return a[i + m];

}

A call to rebuild(u) takes O(size(u)) time. The subtree built by rebuild(u) has minimum

height; there is no tree of smaller height that has size(u) nodes.

8.1 ScapegoatTree: A Binary Search Tree with Partial Rebuilding

A ScapegoatTree is a BinarySearchTree that, in addition to keeping track of the number,

n, of nodes in the tree also keeps a counter, q, that maintains an upper-bound on the

number of nodes.
ScapegoatTree

int q;

At all times, n and q obey the following inequalities:

q/2 ≤ n ≤ q .

In addition, a ScapegoatTree has logarithmic height; at all times, the height of the scape-

goat tree does not exceed:

log3/2q ≤ log3/2 2n < log3/2n+ 2 . (8.1)

Even with this constraint, a ScapegoatTree can look surprisingly unbalanced. The tree in

Figure 8.1 has q = n = 10 and height 5 < log3/2 10 ≈ 5.679.

154

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

0

1

2

3

4

5

6

7

8

9

Figure 8.1: A ScapegoatTree with 10 nodes and height 5.

Implementing the find(x) operation in a ScapegoatTree is done using the stan-

dard algorithm for searching in a BinarySearchTree (see Section 6.2). This takes time

proportional to the height of the tree which, by (8.1) is O(logn).

To implement the add(x) operation, we first increment n and q and then use the

usual algorithm for adding x to a binary search tree; we search for x and then add a new

leaf u with u.x = x. At this point, we may get lucky and the depth of u might not exceed

log3/2q. If so, then we leave well enough alone and don’t do anything else.

Unfortunately, it will sometimes happen that depth(u) > log3/2q. In this case we

need to do something to reduce the height. This isn’t a big job; there is only one node,

namely u, whose depth exceeds log3/2q. To fix u, we walk from u back up to the root

looking for a scapegoat, w. The scapegoat, w, is a very unbalanced node. It has the property

that

size(w.child)
size(w)

>
2
3
, (8.2)

where w.child is the child of w on the path from the root to u. We’ll very shortly prove that

a scapegoat exists. For now, we can take it for granted. Once we’ve found the scapegoat

w, we completely destroy the subtree rooted at w and rebuild it into a perfectly balanced

binary search tree. We know, from (8.2), that, even before the addition of u, w’s subtree was

not a complete binary tree. Therefore, when we rebuild w, the height decreases by at least

1 so that height of the ScapegoatTree is once again at most log3/2q.

155

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

0

1

2

3

4

5

6

7

8

9

3.5

1
2

2
3

3
6

6
7 > 2

3

6

7

8

9

0

1

2

3

4

53.5

Figure 8.2: Inserting 3.5 into a ScapegoatTree increases its height to 6, which violates

(8.1) since 6 > log3/2 11 ≈ 5.914. A scapegoat is found at the node containing 5.

ScapegoatTree
boolean add(T x) {
// first do basic insertion keeping track of depth
Node<T> u = newNode(x);
int d = addWithDepth(u);
if (d > log32(q)) {

// depth exceeded, find scapegoat
Node<T> w = u.parent;
while (3*size(w) <= 2*size(w.parent))
w = w.parent;

rebuild(w.parent);
}
return d >= 0;

}

If we ignore the cost of finding the scapegoat w and rebuilding the subtree rooted at

w, then the running time of add(x) is dominated by the initial search, which takesO(logq) =

O(logn) time. We will account for the cost of finding the scapegoat and rebuilding using

amortized analysis in the next section.

The implementation of remove(x) in a ScapegoatTree is very simple. We search for

x and remove it using the usual algorithm for removing a node from a BinarySearchTree.

(Note that this can never increase the height of the tree.) Next, we decrement n but leave q

unchanged. Finally, we check if q > 2n and, if so, we rebuild the entire tree into a perfectly

156

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

balanced binary search tree and set q = n.

ScapegoatTree
boolean remove(T x) {
if (super.remove(x)) {

if (2*n < q) {
rebuild(r);
q = n;

}
return true;

}
return false;

}

Again, if we ignore the cost of rebuilding, the running time of the remove(x) operation is

proportional to the height of the tree, and is therefore O(logn).

8.1.1 Analysis of Correctness and Running-Time

In this section we analyze the correctness and amortized running time of operations on a

ScapegoatTree. We first prove the correctness by showing that, when the add(x) operation

results in a node that violates Condition (8.1), then we can always find a scapegoat:

Lemma 8.1. Let u be a node of depth h > log3/2q in a ScapegoatTree. Then there exists a node

w on the path from u to the root such that

size(w)
size(parent(w))

> 2/3 .

Proof. Suppose, for the sake of contradiction, that this is not the case, and

size(w)
size(parent(w))

≤ 2/3 .

for all nodes w on the path from u to the root. Denote the path from the root to u as

r = u0, . . . ,uh = u. Then, we have size(u0) = n, size(u1) ≤ 2
3n, size(u2) ≤ 4

9n and, more

generally,

size(ui) ≤
(2

3

)i
n .

But this gives a contradiction, since size(u) ≥ 1, hence

1 ≤ size(u) ≤
(2

3

)h
n <

(2
3

)log3/2 q
n ≤

(2
3

)log3/2 n
n =

(1
n

)
n = 1 .

157

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

Next, we analyze the parts of the running time that we have not yet accounted for.

There are two parts: The cost of calls to size(u) when search for scapegoat nodes, and the

cost of calls to rebuild(w) when we find a scapegoat w. The cost of calls to size(u) can be

related to the cost of calls to rebuild(w), as follows:

Lemma 8.2. During a call to add(x) in a ScapegoatTree, the cost of finding the scapegoat w

and rebuilding the subtree rooted at w is O(size(w)).

Proof. The cost of rebuilding the scapegoat node w, once we find it, is O(size(w)). When

searching for the scapegoat node, we call size(u) on a sequence of nodes u0, . . . ,uk until

we find the scapegoat uk = w. However, since uk is the first node in this sequence that is a

scapegoat, we know that

size(ui) <
2
3
size(ui+1)

for all i ∈ {0, . . . , k − 2}. Therefore, the cost of all calls to size(u) is

O



k∑

i=0

size(uk−i)


 = O


size(uk) +

k−1∑

i=0

size(uk−i−1)




= O


size(uk) +

k−1∑

i=0

(2
3

)i
size(uk)




= O


size(uk)


1 +

k−1∑

i=0

(2
3

)i




= O(size(uk)) =O(size(w)) ,

where the last line follows from the fact that the sum is a geometrically decreasing series.

All that remains is to prove an upper-bound on the cost of all calls to rebuild(u)

during a sequence of m operations:

Lemma 8.3. Starting with an empty ScapegoatTree any sequence of m add(x) and remove(x)

operations causes at most O(m logm) time to be used by rebuild(u) operations.

Proof. To prove this, we will use a credit scheme. We imagine that each node stores a

number of credits. Each credit can pay for some constant, c, units of time spent rebuilding.

The scheme gives out a total of O(m logm) credits and every call to rebuild(u) is paid for

with credits stored at u.

158

8. Scapegoat Trees 8.1. ScapegoatTree: A Binary Search Tree with Partial Rebuilding

During an insertion or deletion, we give one credit to each node on the path to

the inserted node, or deleted node, u. In this way we hand out at most log3/2q ≤ log3/2m

credits per operation. During a deletion we also store an additional 1 credit “on the side.”

Thus, in total we give out at mostO(m logm) credits. All that remains is to show that these

credits are sufficient to pay for all calls to rebuild(u).

If we call rebuild(u) during an insertion, it is because u is a scapegoat. Suppose,

without loss of generality, that
size(u.left)

size(u)
>

2
3
.

Using the fact that

size(u) = 1 + size(u.left) + size(u.right)

we deduce that
1
2
size(u.left) > size(u.right)

and therefore

size(u.left)− size(u.right) >
1
2
size(u.left) >

1
3
size(u) .

Now, the last time a subtree containing u was rebuilt (or when u was inserted, if a subtree

containing u was never rebuilt), we had

size(u.left)− size(u.right) ≤ 1 .

Therefore, the number of add(x) or remove(x) operations that have affected u.left or

u.right since then is at least
1
3
size(u)− 1 .

and there are therefore at least this many credits stored at u that are available to pay for

the O(size(u)) time it takes to call rebuild(u).

If we call rebuild(u) during a deletion, it is because q > 2n. In this case, we have

q − n > n credits stored “on the side” and we use these to pay for the O(n) time it takes to

rebuild the root. This completes the proof.

8.1.2 Summary

The following theorem summarizes the performance of the ScapegoatTree data structure:

Theorem8.1. A ScapegoatTree implements the SSet interface. Ignoring the cost of rebuild(u)

operations, a ScapegoatTree supports the operations add(x), remove(x), and find(x) inO(logn)

time per operation.

159

8. Scapegoat Trees 8.2. Discussion and Exercises

Furthermore, beginning with an empty ScapegoatTree, any sequence of m add(x) and

remove(x) operations results in a total of O(m logm) time spent during all calls to rebuild(u).

8.2 Discussion and Exercises

The term scapegoat tree is due to Galperin and Rivest [33], who define and analyze these

trees. However, the same structure was discovered earlier by Andersson [5, 7], who called

them general balanced trees since they can have any shape as long as their height is small.

Experimenting with the ScapegoatTree implementation will reveal that it is of-

ten considerably slower than the other SSet implementations in this book. This may be

somewhat surprising, since height bound of

log3/2q ≈ 1.709logn+O(1)

is better than the expected length of a search path in a Skiplist and not too far from that

of a Treap. The implementation could be optimized by storing the sizes of subtrees ex-

plicitly at each node or by reusing already computed subtree sizes (Exercises 8.5 and 8.6).

Even with these optimizations, there will always be sequences of add(x) and delete(x)

operation for which a ScapegoatTree takes longer than other SSet implementations.

This gap in performance is due to the fact that, unlike the other SSet implementa-

tions discussed in this book, a ScapegoatTree can spend a lot of time restructuring itself.

Exercise 8.3 asks you to prove that there are sequences of n operations in which a Scape-

goatTree will spend on the order of n logn time in calls to rebuild(u). This is in contrast to

other SSet implementations discussed in this book that only makeO(n) structural changes

during a sequence of n operations. This is, unfortunately, a necessary consequence of the

fact that a ScapegoatTree does all its restructuring by calls to rebuild(u) [20].

Despite their lack of performance, there are applications in which a Scapegoat-

Tree could be the right choice. This would occur any time there is additional data asso-

ciated with nodes that cannot be updated in constant time when a rotation is performed,

but that can be updated during a rebuild(u) operation. In such cases, the Scapegoat-

Tree and related structures based on partial rebuilding may work. An example of such an

application is outlined in Exercise 8.12.

Exercise 8.1. Illustrate the addition of the values 1.5 and then 1.6 on the ScapegoatTree

in Figure 8.1.

Exercise 8.2. Illustrate what happens when we start with an empty ScapegoatTree and

add the sequence 1,5,2,4,3 and show where the credits described in the proof of Lemma 8.3

160

8. Scapegoat Trees 8.2. Discussion and Exercises

go, and how they are used during this sequence of additions.

Exercise 8.3. Show that, if we start with an empty ScapegoatTree and call add(x) for

x = 1,2,3, . . . ,n, then the total time spent during calls to rebuild(u) is at least cn logn for

some constant c > 0.

Exercise 8.4. The ScapegoatTree, as described in this chapter, guarantees that the length

of the search path does not exceed log3/2q.

1. Design, analyze, and implement a modified version of ScapegoatTree where the

length of the search path does not exceed logbq, where b is a parameter with 1 < b <

2.

2. What does your analysis and/or experiments say about the amortized cost of find(x),

add(x) and remove(x) as a function of n and b?

Exercise 8.5. Modify the add(x) method of the ScapegoatTree so that it does not waste any

time recomputing the sizes of subtrees that it has already computed the size of. This is pos-

sible because, by the time the method wants to compute size(w), it has already computed

size(w.left) or size(w.right). Compare the performance of your modified implementa-

tion with the implementation given here.

Exercise 8.6. Implement a second version of the ScapegoatTree data structure that ex-

plicitly stores and maintains the sizes of the subtree rooted at each node. Compare the

performance of the resulting implementation with that of the original ScapegoatTree im-

plementation as well as the implementation from Exercise 8.5.

Exercise 8.7. Reimplement the rebuild(u) method discussed at the beginning of this

chapter so that it does not require the use of an array to store the nodes of the subtree

being rebuilt. Instead, it should use recursion to first connect the nodes into a linked list

and then convert this linked list into a perfectly balanced binary tree. (There are very

elegant recursive implementations of both steps.)

Exercise 8.8. Analyze and implement a WeightBalancedTree. This is a tree in which each

node u, except the root, maintains the balance invariant that size(u) ≤ (2/3)size(u.parent).

The add(x) and remove(x) operations are identical to the standard BinarySearchTree op-

erations, except that any time the balance invariant is violated at a node u, the subtree

rooted at u.parent is rebuilt. Your analysis should show that operations on a WeightBal-

ancedTree run in O(logn) amortized time.

161

8. Scapegoat Trees 8.2. Discussion and Exercises

Exercise 8.9. Analyze and implement a WeightBalancedTree. This is a tree in which each

node u, except the root, maintains the balance invariant that size(u) ≤ (2/3)size(u.parent).

The add(x) and remove(x) operations are identical to the standard BinarySearchTree op-

erations, except that any time the balance invariant is violated at a node u, rotations are

performed in order to restore these invariants. Your analysis should show that operations

on a WeightBalancedTree run in O(logn) worst-case time.

Exercise 8.10. Analyze and implement a CountdownTree. In a CountdownTree each node

u keeps a timer u.t. The add(x) and remove(x) operations are exactly the same as in a stan-

dard BinarySearchTree except that, whenever one of these operations affects u’s subtree,

u.t is decremented. When u.t = 0 the entire subtree rooted at u is rebuilt into a perfectly

balanced binary search tree. When a node u is involved in a rebuilding operation (either

because u is rebuilt or one of u’s ancestors is rebuilt) u.t is reset to size(u)/3.

Your analysis should show that operations on a CountdownTree run in O(logn)

amortized time. (Hint: First show that each node u satisfies some version of a balance

invariant.)

Exercise 8.11. Analyze and implement a DynamiteTree. In a DynamiteTree each node u

keeps tracks of the size of the subtree rooted at u in a variable u.size. The add(x) and

remove(x) operations are exactly the same as in a standard BinarySearchTree except that,

whenever one of these operations affects a node u’s subtree, u explodes with probability

1/u.size. When u explodes, its entire subtree is rebuilt into a perfectly balanced binary

search tree.

Your analysis should show that operations on a DynamiteTree run in O(logn) ex-

pected time.

Exercise 8.12. Design and implement a Sequence data structure that maintains a sequence

(list) of elements. It supports these operations:

• addAfter(e): Add a new element after the element e in the sequence. Return the

newly added element. (If e is null, the new element is added at the beginning of the

sequence.)

• remove(e): Remove e from the sequence.

• testBefore(e1,e2): return true if and only if e1 comes before e2 in the sequence.

The first two operations should run inO(logn) amortized time. The third operation should

run in constant-time.

162

8. Scapegoat Trees 8.2. Discussion and Exercises

The Sequence data structure can be implemented by storing the elements in some-

thing like a ScapegoatTree, in the same order that they occur in the sequence. To imple-

ment testBefore(e1,e2) in constant time, each element e is labelled with an integer that

encodes the path from the root to e. In this way, testBefore(e1,e2) can be implemented

just by comparing the labels of e1 and e2.

163

8. Scapegoat Trees 8.2. Discussion and Exercises

164

Chapter 9

Red-Black Trees

In this chapter, we present red-black trees, a version of binary search trees that have loga-

rithmic depth. Red-black trees are one of the most widely-used data structures in practice.

They appear as the primary search structure in many library implementations, including

the Java Collections Framework and several implementations of the C++ Standard Tem-

plate Library. They are also used within the Linux operating system kernel. There are

several reasons for the popularity of red-black trees:

1. A red-black tree storing n values has height at most 2logn.

2. The add(x) and remove(x) operations on a red-black tree run in O(logn) worst-case

time.

3. The amortized number of rotations done during an add(x) or remove(x) operation is

constant.

The first two of these properties already put red-black trees ahead of skiplists, treaps, and

scapegoat trees. Skiplists and treaps rely on randomization and their O(logn) running

times are only expected. Scapegoat trees have a guaranteed bound on their height, but

add(x) and remove(x) only run in O(logn) amortized time. The third property is just icing

on the cake. It tells us that that the time needed to add or remove an element x is dwarfed

by the time it takes to find x.1

However, the nice properties of red-black trees come with a price: implementation

complexity. Maintaining a bound of 2logn on the height is not easy. It requires a careful

analysis of a number of cases and it requires that the implementation does exactly the right

1Note that skiplists and treaps also have this property in the expected sense. See Exercise 4.6 and Exer-

cise 7.5.

165

9. Red-Black Trees 9.1. 2-4 Trees

Figure 9.1: A 2-4 tree of height 3.

thing in each case. One misplaced rotation or change of color produces a bug that can be

very difficult to understand and track down.

Rather than jumping directly into the implementation of red-black trees, we will

first provide some background on a related data structure: 2-4 trees. This will give some

insight into how red-black trees were discovered and why efficiently maintaining red-

black trees is even possible.

9.1 2-4 Trees

A 2-4 tree is a rooted tree with the following properties:

Property 9.1 (height). All leaves have the same depth.

Property 9.2 (degree). Every internal node has 2, 3, or 4 children.

An example of a 2-4 tree is shown in Figure 9.1. The properties of 2-4 trees imply

that their height is logarithmic in the number of leaves:

Lemma 9.1. A 2-4 tree with n leaves has height at most logn.

Proof. The lower-bound of 2 on the number of children of an internal node implies that, if

the height of a 2-4 tree is h, then it has at least 2h leaves. In other words,

n ≥ 2h .

Taking logarithms on both sides of this inequality gives h ≤ logn.

9.1.1 Adding a Leaf

Adding a leaf to a 2-4 tree is easy (see Figure 9.2). If we want to add a leaf u as the child

of some node w on the second-last level, we simply make u a child of w. This certainly

166

9. Red-Black Trees 9.1. 2-4 Trees

w

w

u

u

w w′

Figure 9.2: Adding a leaf to a 2-4 Tree. This process stops after one split because w.parent

has degree less than 4 before the addition.

maintains the height property, but could violate the degree property; if w had 4 children

prior to adding u, then w now has 5 children. In this case, we split w into two nodes, w

and w’, having 2 and 3 children, respectively. But now w’ has no parent, so we recursively

make w’ a child of w’s parent. Again, this may cause w’s parent to have too many children

in which case we split it. This process goes on until we reach a node that has fewer than 4

children, or until we split the root, r, into two nodes r and r′. In the latter case, we make

a new root that has r and r′ as children. This simultaneously increases the depth of all

leaves and so maintains the height property.

Since the height of the 2-4 tree is never more than logn, the process of adding a

leaf finishes after at most logn steps.

167

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

9.1.2 Removing a Leaf

Removing a leaf from a 2-4 tree is a little more tricky (see Figure 9.3). To remove a leaf u

from its parent w, we just remove it. If w had only two children prior to the removal of u,

then w is left with only one child and violates the degree property.

To correct this, we look at w’s sibling, w′. The node w′ is sure to exist since w’s parent

has at least 2 children. If w′ has 3 or 4 children, then we take one of these children from w′

and give it to w. Now w has 2 children and w′ has 2 or 3 children and we are done.

On the other hand, if w′ has only two children, then we merge w and w′ into a single

node, w, that has 3 children. Next we recursively remove w′ from the parent of w′. This

process ends when we reach a node, u, where u or its sibling has more than 2 children; or

we reach the root. In the latter case, if the root is left with only 1 child, then we delete the

root and make its child the new root. Again, this simultaneously decreases the height of

every leaf and therefore maintains the height property.

Again, since the height of the tree is never more than logn, the process of removing

a leaf finishes after at most logn steps.

9.2 RedBlackTree: A Simulated 2-4 Tree

A red-black tree is a binary search tree in which each node, u, has a color which is either

red or black. Red is represented by the value 0 and black by the value 1.
RedBlackTree

class Node<T> extends BinarySearchTree.BSTNode<Node<T>,T> {
byte color;

}

Before and after any operation on a red-black tree, the following two properties are

satisfied. Each property is defined both in terms of the colors red and black, and in terms

of the numeric values 0 and 1.

Property 9.3 (black-height). There are the same number of black nodes on every root to

leaf path. (The sum of the colors on any root to leaf path is the same.)

Property 9.4 (no-red-edge). No two red nodes are adjacent. (For any node u, except the

root, u.color+ u.parent.color ≥ 1.)

Notice that we can always color the root, r, of a red-black tree black without vi-

olating either of these two properties, so we will assume that the root is black, and the

algorithms for updating a red-black tree will maintain this. Another trick that simplifies

168

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

u

Figure 9.3: Removing a leaf from a 2-4 Tree. This process goes all the way to the root

because all of u’s ancestors and their siblings have degree 2.

169

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

Figure 9.4: An example of a red-black tree with black-height 3. External (nil) nodes are

drawn as squares.

red-black trees is to treat the external nodes (represented by nil) as black nodes. This way,

every real node, u, of a red-black tree has exactly two children, each with a well-defined

color. An example of a red-black tree is shown in Figure 9.4.

9.2.1 Red-Black Trees and 2-4 Trees

At first it might seem surprising that a red-black tree can be efficiently updated to maintain

the black-height and no-red-edge properties, and it seems unusual to even consider these

as useful properties. However, red-black trees were designed to be an efficient simulation

of 2-4 trees as binary trees.

Refer to Figure 9.5. Consider any red-black tree, T , having n nodes and perform the

following transformation: Remove each red node u and connect u’s two children directly

to the (black) parent of u. After this transformation we are left with a tree T ′ having only

black nodes.

Every internal node in T ′ has 2, 3, or 4 children: A black node that started out with

two black children will still have two black children after this transformation. A black

node that started out with one red and one black child will have three children after this

transformation. A black node that started out with two red children will have 4 children

after this transformation. Furthermore, the black-height property now guarantees that

every root-to-leaf path in T ′ has the same length. In other words, T ′ is a 2-4 tree!

The 2-4 tree T ′ has n + 1 leaves that correspond to the n + 1 external nodes of the

red-black tree. Therefore, this tree has height log(n+1). Now, every root to leaf path in the

2-4 tree corresponds to a path from the root of the red-black tree T to an external node.

The first and last node in this path are black and at most one out of every two internal

nodes is red, so this path has at most log(n+ 1) black nodes and at most log(n+ 1)− 1 red

170

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

Figure 9.5: Every red-black tree has a corresponding 2-4 tree.

nodes. Therefore, the longest path from the root to any internal node in T is at most

2log(n+ 1)− 2 ≤ 2logn ,

for any n ≥ 1. This proves the most important property of red-black trees:

Lemma 9.2. The height of red-black tree with n nodes is at most 2logn.

Now that we have seen the relationship between 2-4 trees and red-black trees, it

is not hard to believe that we can efficiently maintain a red-black tree while adding and

removing elements.

We have already seen that adding an element in a BinarySearchTree can be done

by adding a new leaf. Therefore, to implement add(x) in a red-black tree we need a method

of simulating splitting a degree 5 node in a 2-4 tree. A degree 5 node is represented by a

black node that has two red children one of which also has a red child. We can “split” this

node by coloring it red and coloring its two children black. An example of this is shown

in Figure 9.6.

Similarly, implementing remove(x) requires a method of merging two nodes and

borrowing a child from a sibling. Merging two nodes is the inverse of a split (shown in

Figure 9.6), and involves coloring two (black) siblings red and coloring their (red) parent

black. Borrowing from a sibling is the most complicated of the procedures and involves

both rotations and recoloring of nodes.

171

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

w

w

u

w w′

u

Figure 9.6: Simulating a 2-4 tree split operation during an addition in a red-black tree.

(This simulates the 2-4 tree addition shown in Figure 9.2.)

172

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

Of course, during all of this we must still maintain the no-red-edge property and

the black-height property. While it is no longer surprising that this can be done, there are

a large number of cases that have to be considered if we try to do a direct simulation of

a 2-4 tree by a red-black tree. At some point, it just becomes simpler to forget about the

underlying 2-4 tree and work directly towards maintaining the red-black tree properties.

9.2.2 Left-Leaning Red-Black Trees

There is no single definition of a red-black tree. Rather, there are a family of structures

that manage to maintain the black-height and no-red-edge properties during add(x) and

remove(x) operations. Different structures go about it in different ways. Here, we imple-

ment a data structure that we call a RedBlackTree. This structure implements a particular

variant of red-black trees that satisfies an additional property:

Property 9.5 (left-leaning). At any node u, if u.left is black, then u.right is black.

Note that the red-black tree shown in Figure 9.4 does not satisfy the left-leaning

property; it is violated by the parent of the red node in the rightmost path.

The reason for maintaining the left-leaning property is that it reduces the number

of cases encountered when updating the tree during add(x) and remove(x) operations. In

terms of 2-4 trees, it implies that every 2-4 tree has a unique representation: A node of

degree 2 becomes a black node with 2 black children. A node of degree 3 becomes a black

node whose left child is red and whose right child is black. A node of degree 4 becomes a

black node with two red children.

Before we describe the implementation of add(x) and remove(x) in detail, we first

present some simple subroutines used by these methods that are illustrated in Figure 9.7.

The first two subroutines are for manipulating colors while preserving the black-height

property. The pushBlack(u) method takes as input a black node u that has two red chil-

dren and colors u red and its two children black. The pullBlack(u) method reverses this

operation:
RedBlackTree

void pushBlack(Node<T> u) {
u.color--;
u.left.color++;
u.right.color++;

}
void pullBlack(Node<T> u) {
u.color++;
u.left.color--;

173

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

u

u

pushBlack(u)
⇓

u

u

pullBlack(u)
⇓

flipLeft(u)
⇓

u

u

flipRight(u)
⇓

u

u

Figure 9.7: Flips, pulls and pushes

u.right.color--;
}

The flipLeft(u) method swaps the colors of u and u.right and then performs a

left rotation at u. This reverses the colors of these two nodes as well as their parent-child

relationship:
RedBlackTree

void flipLeft(Node<T> u) {
swapColors(u, u.right);
rotateLeft(u);

}

The flipLeft(u) operation is especially useful in restoring the left-leaning property at a

node u that violates it (because u.left is black and u.right is red). In this special case, we

can be assured this operation preserves both the black-height and no-red-edge properties.

The flipRight(u) operation is symmetric to flipLeft(u) with the roles of left and right

reversed.
RedBlackTree

void flipRight(Node<T> u) {
swapColors(u, u.left);
rotateRight(u);

}

9.2.3 Addition

To implement add(x) in a RedBlackTree, we perform a standard BinarySearchTree inser-

tion, which adds a new leaf, u, with u.x = x and set u.color = red. Note that this does not

change the black height of any node, so it does not violate the black-height property. It

174

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

may, however, violate the left-leaning property (if u is the right child of its parent) and it

may violate the no-red-edge property (if u’s parent is red). To restore these properties, we

call the method addFixup(u).
RedBlackTree

boolean add(T x) {
Node<T> u = newNode(x);
u.color = red;
boolean added = add(u);
if (added)

addFixup(u);
return added;

}

The addFixup(u) method, illustrated in Figure 9.8, takes as input a node u whose

color is red and which may be violating the no-red-edge property and/or the left-leaning

property. The following discussion is probably impossible to follow without referring to

Figure 9.8 or recreating it on a piece of paper. Indeed, the reader may wish to study this

figure before continuing.

If u is the root of the tree, then we can color u black and this restores both proper-

ties. If u’s sibling is also red, then u’s parent must be black, so both the left-leaning and

no-red-edge properties already hold.

Otherwise, we first determine if u’s parent, w, violates the left-leaning property

and, if so, perform a flipLeft(w) operation and set u = w. This leaves us in a well-defined

state: u is the left child of its parent, w, so w now satisfies the left-leaning property. All that

remains is to ensure the no-red-edge property at u. We only have to worry about the case

where w is red, since otherwise u already satisfies the no-red-edge property.

Since we are not done yet, u is red and w is red. The no-red-edge property (which

is only violated by u and not by w) implies that u’s grandparent g exists and is black. If g’s

right child is red, then the left-leaning property ensures that both g’s children are red, and

a call to pushBlack(g) makes g red and w black. This restores the no-red-edge property at

u, but may cause it to be violated at g, so the whole process starts over with u = g.

If g’s right child is black, then a call to flipRight(g) makes w the (black) parent

of g and gives w two red children, u and g. This ensures that u satisfies the no-red-edge

property and g satisfies the left-leaning property. In this case we can stop.
RedBlackTree

void addFixup(Node<T> u) {
while (u.color == red) {

if (u == r) { // u is the root - done

175

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

u

u

u

u

w

u

w

u

w

u

w

u

w

u

w

u

new u

flipLeft(w) ; u = w

u

w.color

flipRight(g) pushBlack(g)

g g

g.right.color

u.parent.left.color

return

return

return

w

www

w

u

w

u

new u

pushBlack(g)

g

Figure 9.8: A single round in the process of fixing Property 2 after an insertion.

176

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

u.color = black;
return;

}
Node<T> w = u.parent;
if (w.left.color == black) { // ensure left-leaning
flipLeft(w);
u = w;
w = u.parent;

}
if (w.color == black)
return; // no red-red edge = done

Node<T> g = w.parent; // grandparent of u
if (g.right.color == black) {
flipRight(g);
return;

} else {
pushBlack(g);
u = g;

}
}

}

The insertFixup(u) method takes constant time per iteration and each iteration

either finishes or moves u closer to the root. This implies that the insertFixup(u) method

finishes after O(logn) iterations in O(logn) time.

9.2.4 Removal

The remove(x) operation in a RedBlackTree is the most complicated operation to imple-

ment, and this is true of all known implementations. Like remove(x) in a BinarySearch-

Tree, this operation boils down to finding a node w with only one child, u, and splicing w

out of the tree by having w.parent adopt u.

The problem with this is that, if w is black, then the black-height property will now

be violated at w.parent. We get around this problem, temporarily, by adding w.color to

u.color. Of course, this introduces two other problems: (1) u and w both started out black,

then u.color+w.color = 2 (double black), which is an invalid color. If w was red, then it is

replaced by a black node u, which may violate the left-leaning property at u.parent. Both

of these problems are resolved with a call to the removeFixup(u) method.
RedBlackTree

boolean remove(T x) {
Node<T> u = findLast(x);
if (u == nil || compare(u.x, x) != 0)

177

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

return false;
Node<T> w = u.right;
if (w == nil) {

w = u;
u = w.left;

} else {
while (w.left != nil)
w = w.left;

u.x = w.x;
u = w.right;

}
splice(w);
u.color += w.color;
u.parent = w.parent;
removeFixup(u);
return true;

}

The removeFixup(u) method takes as input a node u whose color is black (1) or

double-black (2). If u is double-black, then removeFixup(u) performs a series of rotations

and recoloring operations that move the double-black node up the tree until it can be

gotten rid of. During this process, the node u changes until, at the end of this process, u

refers to the root of the subtree that has been changed. The root of this subtree may have

changed color. In particular, it may have gone from red to black, so the removeFixup(u)

method finishes by checking if u’s parent violates the left-leaning property and, if so, fixes

it.
RedBlackTree

void removeFixup(Node<T> u) {
while (u.color > black) {

if (u == r) {
u.color = black;

} else if (u.parent.left.color == red) {
u = removeFixupCase1(u);

} else if (u == u.parent.left) {
u = removeFixupCase2(u);

} else {
u = removeFixupCase3(u);

}
}
if (u != r) { // restore left-leaning property, if necessary

Node<T> w = u.parent;
if (w.right.color == red && w.left.color == black) {
flipLeft(w);

178

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

}
}

}

The removeFixup(u) method is illustrated in Figure 9.9. Again, the following text

will be very difficult, if not impossible, to follow without referring constantly to Figure 9.9.

Each iteration of the loop in removeFixup(u) processes the double-black node u based on

one of four cases.

Case 0: u is the root. This is the easiest case to treat. We recolor u to be black and this does

not violate any of the red-black tree properties.

Case 1: u’s sibling, v, is red. In this case, u’s sibling is the left child of its parent, w (by the

left-leaning property). We perform a right-flip at w and then proceed to the next iteration.

Note that this causes w’s parent to violate the left-leaning property and it causes the depth

of u to increase. However, it also implies that the next iteration will be in Case 3 with w

colored red. When examining Case 3, below, we will see that this means the process will

stop during the next iteration.
RedBlackTree

Node<T> removeFixupCase1(Node<T> u) {
flipRight(u.parent);
return u;

}

Case 2: u’s sibling, v, is black and u is the left child of its parent, w. In this case, we call

pullBlack(w), making u black, v red, and darkening the color of w to black or double-

black. At this point, w does not satisfy the left-leaning property, so we call flipLeft(w) to

fix this.

At this point, w is red and v is the root of the subtree we started with. We need to

check if w causes no-red-edge property to be violated. We do this by inspecting w’s right

child, q. If q is black, then w satisfies the no-red-edge property and we can continue to the

next iteration with u = v.

Otherwise (q is red), both the no-red-edge property and the left-leaning property

are violated at q and w, respectively. A call to rotateLeft(w) restores the left-leaning

property, but the no-red-edge property is still violated. At this point, q is the left child

of v and w is the left child of q, q and w are both red and v is black or double-black. A

flipRight(v) makes q the parent of both v and w. Following this up by a pushBlack(q)

makes both v and w black and sets the color of q back to the original color of w.

179

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

new u

u u

w

u

pullBlack(w) pullBlack(w)

flipLeft(w) flipRight(w)

u

w

uv v

v

v

v

v

u

u

u

u

u

w

w

w

w

w

q

q

q

q

q

q.color

rotateLeft(w)

flipRight(v)

pushBlack(q)

v

q

v

v

v

v

v

w

w

w

w

w

w

w

q

q

q

q

q.color

rotateRight(w)

flipLeft(v)

pushBlack(q)

v

v

v

q q

q

w

ww

u

u u

u u

u

u

u

v.left.color

flipLeft(v)

w (new u)

q

w

u

pushBlack(v)

v (new u)

w

w

flipRight(w)

v.right.color

v

u

w

q

v

u

w

q

vu

w

q

flipLeft(v)

vv

removeFixupCase1(u)removeFixupCase3(u)removeFixupCase2(u)

Figure 9.9: A single round in the process of eliminating a double-black node after a re-

moval. 180

9. Red-Black Trees 9.2. RedBlackTree: A Simulated 2-4 Tree

At this point, there is no more double-black node and the no-red-edge and black-

height properties are reestablished. The only possible problem that remains is that the

right child of v may be red, in which case the left-leaning property is violated. We check

this and perform a flipLeft(v) to correct it if necessary.
RedBlackTree

Node<T> removeFixupCase2(Node<T> u) {
Node<T> w = u.parent;
Node<T> v = w.right;
pullBlack(w); // w.left
flipLeft(w); // w is now red
Node<T> q = w.right;
if (q.color == red) { // q-w is red-red

rotateLeft(w);
flipRight(v);
pushBlack(q);
if (v.right.color == red)
flipLeft(v);

return q;
} else {

return v;
}

}

Case 3: u’s sibling is black and u is the right child of its parent, w. This case is symmetric to

Case 2 and is handled mostly the same way. The only differences come from the fact that

the left-leaning property is asymmetric, so it requires different handling.

As before, we begin with a call to pullBlack(w), which makes v red and u black. A

call to flipRight(w) promotes v to the root of the subtree. At this point w is red, and the

code branches two ways depending on the color of w’s left child, q.

If q is red, then the code finishes up exactly the same way that Case 2 finishes up,

but is even simpler since there is no danger of v not satisfying the left-leaning property.

The more complicated case occurs when q is black. In this case, we examine the

color of v’s left child. If it is red, then v has two red children and its extra black can be

pushed down with a call to pushBlack(v). At this point, v now has w’s original color and

we are done.

If v’s left child is black then v violates the left-leaning property and we restore this

with a call to flipLeft(v). The next iteration of removeFixup(u) then continues with u = v.
RedBlackTree

Node<T> removeFixupCase3(Node<T> u) {
Node<T> w = u.parent;

181

9. Red-Black Trees 9.3. Summary

Node<T> v = w.left;
pullBlack(w);
flipRight(w); // w is now red
Node<T> q = w.left;
if (q.color == red) { // q-w is red-red

rotateRight(w);
flipLeft(v);
pushBlack(q);
return q;

} else {
if (v.left.color == red) {
pushBlack(v); // both v’s children are red
return v;

} else { // ensure left-leaning
flipLeft(v);
return w;

}
}

}

Each iteration of removeFixup(u) takes constant time. Cases 2 and 3 either finish

or move u closer to the root of the tree. Case 0 (where u is the root) always terminates and

Case 1 leads immediately to Case 3, which also terminates. Since the height of the tree is

at most 2logn, we conclude that there are at most O(logn) iterations of removeFixup(u) so

removeFixup(u) runs in O(logn) time.

9.3 Summary

The following theorem summarizes the performance of the RedBlackTree data structure:

Theorem 9.1. A RedBlackTree implements the SSet interface. A RedBlackTree supports the

operations add(x), remove(x), and find(x) in O(logn) worst-case time per operation.

Not included in the above theorem is the extra bonus

Theorem9.2. Beginning with an empty RedBlackTree, any sequence ofm add(x) and remove(x)

operations results in a total ofO(m) time spent during all calls addFixup(u) and removeFixup(u).

We will only sketch a proof of Theorem 9.2. By comparing addFixup(u) and removeFixup(u)

with the algorithms for adding or removing a leaf in a 2-4 tree, we can convince ourselves

that this property is something that is inherited from a 2-4 tree. In particular, if we can

show that the total time spent splitting, merging, and borrowing in a 2-4 tree isO(m), then

this implies Theorem 9.2.

182

9. Red-Black Trees 9.4. Discussion and Exercises

The proof of this for 2-4 trees uses the potential method of amortized analysis.2

Define the potential of an internal node u in a 2-4 tree as

Φ(u) =



1 if u has 2 children

0 if u has 3 children

3 if u has 4 children

and the potential of a 2-4 tree as the sum of the potentials of its nodes. When a split occurs,

it is because a node of degree 4 becomes two nodes, one of degree 2 and one of degree 3.

This means that the overall potential drops by 3 − 1 − 0 = 2. When a merge occurs, two

nodes that used to have degree 2 are replaced by one node of degree 3. The result is a drop

in potential of 2− 0 = 2. Therefore, for every split or merge, the potential decreases by 2.

Next notice that, if we ignore splitting and merging of nodes, there are only a con-

stant number of nodes whose number of children is changed by the addition or removal of

a leaf. When adding a node, one node has its number of children increase by 1, increasing

the potential by at most 3. During the removal of a leaf, one node has its number of chil-

dren decrease by 1, increasing the potential by at most 1, and two nodes may be involved

in a borrowing operation, increasing their total potential by at most 1.

To summarize, each merge and split causes the potential to drop by at least 2.

Ignoring merging and splitting, each addition or removal causes the potential to rise by

at most 3, and the potential is always non-negative. Therefore, the number of splits and

merges caused by m additions or removals on an initially empty tree is at most 3m/2.

Theorem 9.2 is a consequence of this analysis and the correspondence between 2-4 trees

and red-black trees.

9.4 Discussion and Exercises

Red-black trees were first introduced by Guibas and Sedgewick [38]. Despite their high

implementation complexity they are found in some of the most commonly used libraries

and applications. Most algorithms and data structures textbooks discuss some variant of

red-black trees.

Andersson [6] describes a left-leaning version of balanced trees that are similar to

red-black trees but have the additional constraint that any node has at most one red child.

This implies that these trees simulate 2-3 trees rather than 2-4 trees. They are significantly

simpler, though, than the RedBlackTree structure presented in this chapter.

2See the proofs of Lemma 2.2 and Lemma 3.1 for other applications of the potential method.

183

9. Red-Black Trees 9.4. Discussion and Exercises

Sedgewick [66] describes at least two versions of left-leaning red-black trees. These

use recursion along with a simulation of top-down splitting and merging in 2-4 trees. The

combination of these two techniques makes for particularly short and elegant code.

A related, and older, data structure is the AVL tree [3]. AVL trees are height-

balanced: At each node u, the height of the subtree rooted at u.left and the subtree rooted

at u.right differ by at most one. It follows immediately that, if F(h) is the minimum num-

ber of leaves in a tree of height h, then F(h) obeys the Fibonacci recurrence

F(h) = F(h− 1) +F(h− 2)

with base cases F(0) = 1 and F(1) = 1. This means F(h) is approximately ϕh/
√

5, where

ϕ = (1 +
√

5)/2 ≈ 1.61803399 is the golden ratio. (More precisely, |ϕh/√5 − F(h)| ≤ 1/2.)

Arguing as in the proof of Lemma 9.1, this implies

h ≤ logϕ n ≈ 1.440420088logn ,

so AVL trees have smaller height than red-black trees. The height-balanced property can

be maintained during add(x) and remove(x) operations by walking back up the path to the

root and performing a rebalancing operation at each node u where the height of u’s left

and right subtrees differ by 2. See Figure 9.10.

Andersson’s variant of red-black trees, Sedgewick’s variant of red-black trees, and

AVL trees are all simpler to implement than the RedBlackTree structure defined here.

Unfortunately, none of them can guarantee that the amortized time spent rebalancing is

O(1) per update. In particular, there is no analogue of Theorem 9.2 for those structures.

Exercise 9.1. Illustrate the 2-4 tree that corresponds to the RedBlackTree in Figure 9.11.

Exercise 9.2. Illustrate the addition of 13, then 3.5, then 3.3 on the RedBlackTree in Fig-

ure 9.11.

Exercise 9.3. Illustrate the removal of 11, then 9, then 5 on the RedBlackTree in Fig-

ure 9.11.

Exercise 9.4. Show that, for arbitrarily large values of n, there are red-black trees with n

nodes that have height 2logn−O(1).

Exercise 9.5. Show that, for arbitrarily large values of n, there exist sequences of add(x)

and remove(x) operations that lead to red-black trees with n nodes that have height 2logn−
O(1).

184

9. Red-Black Trees 9.4. Discussion and Exercises

h+2

h

h

h+2

h+1

Figure 9.10: Rebalancing in an AVL tree. At most 2 rotations are required to convert a

node whose subtrees have height h and h+ 2 into a node whose subtrees each have height

at most h+ 1.

5

4

3

2

1

6

1197

8 12

10

Figure 9.11: A red-black tree to practice on.

185

9. Red-Black Trees 9.4. Discussion and Exercises

Exercise 9.6. Why does the method remove(x) in the RedBlackTree implementation per-

form the assignment u.parent = w.parent? Shouldn’t this already be done by the call to

splice(w)?

Exercise 9.7. Suppose a 2-4 tree, T , has n` leaves and ni internal nodes.

1. What is the minimum value of ni , as a function of n`?

2. What is the maximum value of ni , as a function of n`?

3. If T ′ is a red-black tree that represents T , then how many red nodes does T ′ have?

Exercise 9.8. Suppose you are given a binary search tree with n nodes and height at most

2logn − 2. Is it always possible to color the nodes red and black so that the tree satisfies

the black-height and no-red-edge properties? If so, can it also be made to satisfy the left-

leaning property?

Exercise 9.9. Suppose you have two red-black trees T1 and T2 that have the same black

height, h, and that the largest key in T1 is smaller than the smallest key in T2. Show how

to merge T1 and T2 in into a single red-black tree in O(h) time.

Exercise 9.10. Extend your solution to Exercise 9.9 to the case where the two trees T1 and

T2 have different black heights, h1 , h2. The running-time should be O(max{h1,h2}).

Exercise 9.11. Prove that, during an add(x) operation, an AVL tree must perform at most

one rebalancing operation (that involves at most 2 rotations; see Figure 9.10). Give an

example of an AVL tree and a remove(x) operation on that tree that requires on the order

of logn rebalancing operations.

Exercise 9.12. Implement an AVLTree class that implements AVL trees as described above.

Compare its performance to that of the RedBlackTree implementation. Which implemen-

tation has a faster find(x) operation?

Exercise 9.13. Design and implement a series of experiments that compare the relative

performance of find(x), add(x), and remove(x) for SkiplistSSet, ScapegoatTree, Treap,

and RedBlackTree. Be sure to include multiple test scenarios, including cases where the

data is random, already sorted, is removed in random order, is removed in sorted order,

and so on.

186

Chapter 10

Heaps

In this chapter, we discuss two implementations of the extremely useful priority Queue

data structure. Both of these structures are a special kind of binary tree called a heap,

which means “a disorganized pile.” This is in contrast to binary search trees that can

thought of as a highly organized pile.

The first heap implementation uses an array to simulate a complete binary tree. It

is very fast and is the basis of one of the fastest known sorting algorithms, namely heapsort

(see Section 11.1.3). The second implementation is based on more flexible binary trees. It

supports a meld(h) operation that allows the priority queue to absorb the elements of a

second priority queue h.

10.1 BinaryHeap: An Implicit Binary Tree

Our first implementation of a (priority) Queue is based on a technique that is over 400

years old. Eytzinger’s method allows us to represent a complete binary tree as an array. This

is done by laying out the nodes of the tree in breadth-first order (see Section 6.1.2) in the

array. In this way, the root is stored at position 0, the root’s left child is stored at position

1, the root’s right child at position 2, the left child of the left child of the root is stored at

position 3, and so on. See Figure 10.1.

If we do this for a large enough tree, some patterns emerge. The left child of the

node at index i is at index left(i) = 2i+ 1 and the right child of the node at index i is at

index right(i) = 2i+2. The parent of the node at index i is at index parent(i) = (i−1)/2.
BinaryHeap

int left(int i) {
return 2*i + 1;

}
int right(int i) {
return 2*i + 2;

}

187

10. Heaps 10.1. BinaryHeap: An Implicit Binary Tree

7

3

8

1

9

4

10

0

11 12 13 14

65

2

1 2 4 53 6 7 8 9 10 11 12 13 140

Figure 10.1: Eytzinger’s method represents a complete binary tree as an array.

int parent(int i) {
return (i-1)/2;

}

A BinaryHeap uses this technique to implicitly represent a complete binary tree in

which the elements are heap-ordered: The value stored at any index i is not smaller than

the value stored at index parent(i), with the exception of the root value, i = 0. It follows

that the smallest value in the priority Queue is therefore stored at position 0 (the root).

In a BinaryHeap, the n elements are stored in an array a:
BinaryHeap

T[] a;
int n;

Implementing the add(x) operation is fairly straightforward. As with all array-

based structures, we first check if a is full (because a.length = n) and, if so, we grow a.

Next, we place x at location a[n] and increment n. At this point, all that remains is to

ensure that we maintain the heap property. We do this by repeatedly swapping x with its

parent until x is no longer smaller than its parent. See Figure 10.2.
BinaryHeap

boolean add(T x) {
if (n + 1 > a.length) resize();
a[n++] = x;
bubbleUp(n-1);
return true;

}
void bubbleUp(int i) {
int p = parent(i);

188

10. Heaps 10.1. BinaryHeap: An Implicit Binary Tree

while (i > 0 && compare(a[i], a[p]) < 0) {
swap(i,p);
i = p;
p = parent(i);

}
}

Implementing the remove() operation, which removes the smallest value from the

heap, is a little trickier. We know where the smallest value is (at the root), but we need to

replace it after we remove it and ensure that we maintain the heap property.

The easiest way to do this is to replace the root with the value a[n− 1], delete that

value, and decrement n. Unfortunately, the new root element is now probably not the

smallest element, so it needs to be moved downwards. We do this by repeatedly compar-

ing this element to its two children. If it is the smallest of the three then we are done.

Otherwise, we swap this element with the smallest of its two children and continue.

BinaryHeap
T remove() {
T x = a[0];
a[0] = a[--n];
trickleDown(0);
if (3*n < a.length) resize();
return x;

}
void trickleDown(int i) {
do {

int j = -1;
int r = right(i);
if (r < n && compare(a[r], a[i]) < 0) {
int l = left(i);
if (compare(a[l], a[r]) < 0) {
j = l;

} else {
j = r;

}
} else {
int l = left(i);
if (l < n && compare(a[l], a[i]) < 0) {
j = l;

}
}
if (j >= 0) swap(i, j);
i = j;

189

10. Heaps 10.1. BinaryHeap: An Implicit Binary Tree

19

17

69

9

32

26

93

4

55

1650

8

9 8 26 5017 16 19 69 32 93 554

19

17

69

9

32

26

93

4

55 6

1650

8

69 8 26 5017 16 19 69 32 93 554

19

17

69

9

32

26

93

4

55

16

8

9 8 2617 16 19 69 32 93 554

6

50

506

19

17

69

9

32

26

93

4

55

16

1 2 4 53 6 7 8 9 10 11 12 13 140

9 2617 16 19 69 32 93 554

50

8

6

506 8

Figure 10.2: Adding the value 6 to a BinaryHeap.

190

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

} while (i >= 0);
}

As with other array-based structures, we will ignore the time spent in calls to

resize(), since these can be accounted for with the amortization argument from Lemma 2.1.

The running times of both add(x) and remove() then depend on the height of the (implicit)

binary tree. Luckily, this is a complete binary tree; every level except the last has the maxi-

mum possible number of nodes. Therefore, if the height of this tree is h, then it has at least

2h nodes. Stated another way

n ≥ 2h .

Taking logarithms on both sides of this equation gives

h ≤ logn .

Therefore, both the add(x) and remove() operation run in O(logn) time.

10.1.1 Summary

The following theorem summarizes the performance of a BinaryHeap:

Theorem 10.1. A BinaryHeap implements the (priority) Queue interface. Ignoring the cost of

calls to resize(), a BinaryHeap supports the operations add(x) and remove() in O(logn) time

per operation.

Furthermore, beginning with an empty BinaryHeap, any sequence of m add(x) and

remove() operations results in a total of O(m) time spent during all calls to resize().

10.2 MeldableHeap: A Randomized Meldable Heap

In this section, we describe the MeldableHeap, a priority Queue implementation in which

the underlying structure is also a heap-ordered binary tree. However, unlike a BinaryHeap

in which the underlying binary tree is completely defined by the number of elements, there

are no restrictions on the shape of the binary tree that underlies a MeldableHeap; anything

goes.

The add(x) and remove() operations in a MeldableHeap are implemented in terms

of the merge(h1,h2) operation. This operation takes two heap nodes h1 and h2 and merges

them, returning a heap node that is the root of a heap that contains all elements in the

subtree rooted at h1 and all elements in the subtree rooted at h2.

The nice thing about a merge(h1,h2) operation is that it can be defined recursively.

See Figure 10.4. If either of h1 or h2 is nil, then we are merging with an empty set, so we

191

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

19

17

69

9

32

26

93

4

55

16

9 2617 16 19 69 32 93 554

50

8

6

506 8

19

17

69

9

32

26

93 55

16

9 2617 16 19 69 32 93 55

8

6

6 8

50

50

19

17

69

9

32

26

93 55

16

9 2617 16 19 69 32 93 55

8

8

6

50

6 50

19

17

69

9

32

26

93 55

16

1 2 4 53 6 7 8 9 10 11 12 13 140

9 2617 16 19 69 32 93 55

6

50

8

6 8 50

Figure 10.3: Removing the minimum value, 4, from a BinaryHeap.

192

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

return h2 or h1, respectively. Otherwise, assume h1.x ≤ h2.x since, if h1.x > h2.x, then we

can reverse the roles of h1 and h2. Then we know that the root of the merged heap will

contain h1.x and we can recursively merge h2 with h1.left or h1.right, as we wish. This

is where randomization comes in, and we toss a coin to decide whether to merge h2 with

h1.left or h1.right:
MeldableHeap

Node<T> merge(Node<T> h1, Node<T> h2) {
if (h1 == nil) return h2;
if (h2 == nil) return h1;
if (compare(h2.x, h1.x) < 0) return merge(h2, h1);
// now we know h1.x <= h2.x
if (rand.nextBoolean()) {

h1.left = merge(h1.left, h2);
h1.left.parent = h1;

} else {
h1.right = merge(h1.right, h2);
h1.right.parent = h1;

}
return h1;

}

In the next section, we show that merge(h1,h2) runs in O(logn) expected time,

where n is the total number of elements in h1 and h2.

With access to a merge(h1,h2) operation, the add(x) operation is easy. We create a

new node u containing x and then merge u with the root of our heap:
MeldableHeap

boolean add(T x) {
Node<T> u = newNode();
u.x = x;
r = merge(u, r);
r.parent = nil;
n++;
return true;

}

This takes O(log(n+ 1)) =O(logn) expected time.

The remove() operation is similarly easy. The node we want to remove is the root,

so we just merge its two children and make the result the root:
MeldableHeap

T remove() {
T x = r.x;

193

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

19

17

9

26

4

55

16

25

32

28

93

19

99

89

20

19

17

9

26

4

55

1650

8

25

32

28

93

19

99

89

20

merge(h1.right,h2)

merge(h1,h2)h1 h2

⇓

8

50

Figure 10.4: Merging h1 and h2 is done by merging h2 with one of h1.left or h1.right.

194

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

r = merge(r.left, r.right);
if (r != nil) r.parent = nil;
n--;
return x;

}

Again, this takes O(logn) expected time.

Additionally, a MeldableHeap can implement many other operations in O(logn)

expected time, including:

• remove(u): remove the node u (and its key u.x) from the heap.

• absorb(h): add all the elements of the MeldableHeap h to this heap, emptying h in

the process.

Each of these operations can be implemented using a constant number of merge(h1,h2)

operations that each take O(logn) time.

10.2.1 Analysis of merge(h1,h2)

The analysis of merge(h1,h2) is based on the analysis of a random walk in a binary tree.

A random walk in a binary tree is a walk that starts at the root of the tree. At each step

in the walk, a coin is tossed and the walk proceeds to the left or right child of the current

node depending on the result of this coin toss. The walk ends when it falls off the tree (the

current node becomes nil).

The following lemma is somewhat remarkable because it does not depend at all on

the shape of the binary tree:

Lemma 10.1. The expected length of a random walk in a binary tree with n nodes is at most

log(n+ 1).

Proof. The proof is by induction on n. In the base case, n = 0 and the walk has length

0 = log(n+ 1). Suppose now that the result is true for all non-negative integers n′ < n.

Let n1 denote the size of the root’s left subtree, so that n2 = n− n1 − 1 is the size of

the root’s right subtree. Starting at the root, the walk takes one step and then continues in

a subtree of size n1 or continues in a subtree of size n2. By our inductive hypothesis, the

expected length of the walk is then

E[W] = 1 +
1
2

log(n1 + 1) +
1
2

log(n2 + 1) ,

195

10. Heaps 10.2. MeldableHeap: A Randomized Meldable Heap

since each of n1 and n2 are less than n. Since log is a concave function, E[W] is maximized

when n1 = n2 = (n − 1)/2. Therefore, the expected number of steps taken by the random

walk is

E[W] = 1 +
1
2

log(n1 + 1) +
1
2

log(n2 + 1)

≤ 1 + log((n− 1)/2 + 1)

= 1 + log((n+ 1)/2)

= log(n+ 1) .

We make a quick digression to note that, for readers who know a little about infor-

mation theory, the proof of Lemma 10.1 can be stated in terms of entropy.

Information Theoretic Proof of Lemma 10.1. Let di denote the depth of the ith external node

and recall that a binary tree with n nodes has n+ 1 external nodes. The probability of the

random walk reaching the ith external node is exactly pi = 1/2di , so the expected length of

the random walk is given by

H =
n∑

i=0

pidi =
n∑

i=0

pi log
(
2di

)
=

n∑

i=0

pi log(1/pi)

The right hand side of this equation is easily recognizable as the entropy of a probability

distribution over n+ 1 elements. A basic fact about the entropy of a distribution over n+ 1

elements is that it does not exceed log(n+ 1), which proves the lemma.

With this result on random walks, we can now easily prove that the running time

of the merge(h1,h2) operation is O(logn).

Lemma 10.2. If h1 and h2 are the roots of two heaps containing n1 and n2 nodes, respectively,

then the expected running time of merge(h1,h2) is at most O(logn), where n = n1 + n2.

Proof. Each step of the merge algorithm takes one step of a random walk, either in the heap

rooted at h1 or the heap rooted at h2 The algorithm terminates when either of these two

random walks fall out of its corresponding tree (when h1 = null or h2 = null). Therefore,

the expected number of steps performed by the merge algorithm is at most

log(n1 + 1) + log(n2 + 1) ≤ 2logn .

196

10. Heaps 10.3. Discussion and Exercises

10.2.2 Summary

The following theorem summarizes the performance of a MeldableHeap:

Theorem 10.2. A MeldableHeap implements the (priority) Queue interface. A MeldableHeap

supports the operations add(x) and remove() in O(logn) expected time per operation.

10.3 Discussion and Exercises

The implicit representation of a complete binary tree as an array, or list, seems to have

been first proposed by Eytzinger [27], as a representation for pedigree family trees. The

BinaryHeap data structure described here was first introduced by Williams [76].

The randomized MeldableHeap data structure described here appears to have first

been proposed by Gambin and Malinowski [34]. Other meldable heap implementations

exist, including leftist heaps [16, 48, Section 5.3.2], binomial heaps [73], Fibonacci heaps

[32], pairing heaps [31], and skew heaps [70], although none of these are as simple as the

MeldableHeap structure.

Some of the above structures also support a decreaseKey(u,y) operation in which

the value stored at node u is decreased to y. (It is a pre-condition that y ≤ u.x.) This

operation can be implemented inO(logn) time in most of the above structures by removing

node u and adding y. However, some of these structures can implement decreaseKey(u,y)

more efficiently. In particular, decreaseKey(u,y) takes O(1) amortized time in Fibonacci

heaps and O(loglogn) amortized time in a special version of pairing heaps [25]. This

more efficient decreaseKey(u,y) operation has applications in speeding up several graph

algorithms including Dijkstra’s shortest path algorithm [32].

Exercise 10.1. Illustrate the addition of the values 7 and then 3 to the BinaryHeap shown

at the end of Figure 10.2.

Exercise 10.2. Illustrate the removal of the next two values (6 and 8) on the BinaryHeap

shown at the end of Figure 10.3.

Exercise 10.3. Implement the remove(i) method, that removes the value stored in a[i] in

a BinaryHeap. This method should run in O(logn) time. Next, explain why this method is

not likely to be useful.

Exercise 10.4. A d-ary tree is a generalization of a binary tree in which each internal node

has d children. Using Eytzinger’s method it is also possible to represent complete d-ary

trees using arrays. Work out the equations that, given an index i, determine the index of

i’s parent and each of i’s d children in this representation.

197

10. Heaps 10.3. Discussion and Exercises

Exercise 10.5. Using what you learned in Exercise 10.4, design and implement a DaryHeap,

the d-ary generalization of a BinaryHeap. Analyze the running times of operations on a

DaryHeap and test the performance of your DaryHeap implementation against that of the

BinaryHeap implementation given here.

Exercise 10.6. Illustrate the addition of the values 17 and then 82 in the MeldableHeap h1

shown in Figure 10.4. Use a coin to simulate a random bit when needed.

Exercise 10.7. Illustrate the removal of the next two values (4 and 8) in the MeldableHeap

h1 shown in Figure 10.4. Use a coin to simulate a random bit when needed.

Exercise 10.8. Implement the remove(u) method, that removes the node u from a Meld-

ableHeap. This method should run in O(logn) expected time.

Exercise 10.9. Show how, in a BinaryHeap or MeldableHeap, to find the second smallest

value in constant time.

Exercise 10.10. Show how, in a BinaryHeap or MeldableHeap, to find the kth smallest

value in O(k logk) time. (Hint: Using another heap might help.)

Exercise 10.11. Suppose you are given k sorted lists, of total length n. Show how, using

a heap, to merge these into a single sorted list in O(n logk) time. (Hint: Starting with the

case k = 2 can be instructive.)

198

Chapter 11

Sorting Algorithms

This chapter discusses algorithms for sorting a set of n items. This might seem like a

strange topic for a book on data structures, but there are several good reasons for including

it here. The most obvious reason is that two of these sorting algorithms (quicksort and

heap-sort) are intimately related to two of the data structures we have already studied

(random binary search trees and heaps, respectively).

The first part of this chapter discusses algorithms that sort using only comparisons

and presents three algorithms that run in O(n logn) time. As it turns out, all three al-

gorithms are asymptotically optimal; no algorithm that uses only comparisons can avoid

doing roughly n logn comparisons in the worst-case and even the average-case.

Before continuing, we should note that any of the SSet or priority Queue imple-

mentations presented in previous chapters can also be used to obtain an O(n logn) time

sorting algorithm. For example, we can sort n items by performing n add(x) operations

followed by n remove() operations on a BinaryHeap or MeldableHeap. Alternatively, we

can use n add(x) operations on any of the binary search tree data structures and then per-

form an in-order traversal (Exercise 6.8) to extract the elements in sorted order. However,

in both cases we go through a lot of overhead to build a structure that is never fully used.

Sorting is such an important problem that it is worthwhile developing direct methods that

are as fast, simple, and space-efficient as possible.

The second part of this chapter shows that, if we allow other operations besides

comparisons, then all bets are off. Indeed, by using array-indexing, it is possible to sort a

set of n integers in the range {0, . . . ,nc − 1} in O(cn) time.

199

11. Sorting Algorithms 11.1. Comparison-Based Sorting

11.1 Comparison-Based Sorting

In this section, we present three sorting algorithms: merge-sort, quicksort, and heap-sort.

All these algorithms take an input array a and sort the elements of a into non-decreasing

order in O(n logn) (expected) time. These algorithms are all comparison-based. Their sec-

ond argument, c, is a Comparator that implements the compare(a,b) method. These algo-

rithms don’t care what type of data is being sorted, the only operation they do on the data is

comparisons using the compare(a,b) method. Recall, from Section 1.1.4, that compare(a,b)

returns a negative value if a < b, a positive value if a > b, and zero if a = b.

11.1.1 Merge-Sort

The merge-sort algorithm is a classic example of recursive divide and conquer: If the length

of a is at most 1, then a is already sorted, so we do nothing. Otherwise, we split a into two

halves, a0 = a[0], . . . ,a[n/2− 1] and a1 = a[n/2], . . . ,a[n− 1]. We recursively sort a0 and a1,

and then we merge (the now sorted) a0 and a1 to get our fully sorted array a:
Algorithms

<T> void mergeSort(T[] a, Comparator<T> c) {
if (a.length <= 1) return;
T[] a0 = Arrays.copyOfRange(a, 0, a.length/2);
T[] a1 = Arrays.copyOfRange(a, a.length/2, a.length);
mergeSort(a0, c);
mergeSort(a1, c);
merge(a0, a1, a, c);

}

An example is shown in Figure 11.1.

Compared to sorting, merging the two sorted arrays a0 and a1 is fairly easy. We

add elements to a one at a time. If a0 or a1 is empty we add the next elements from the

other (non-empty) array. Otherwise, we take the minimum of the next element in a0 and

the next element in a1 and add it to a:
Algorithms

<T> void merge(T[] a0, T[] a1, T[] a, Comparator<T> c) {
int i0 = 0, i1 = 0;
for (int i = 0; i < a.length; i++) {

if (i0 == a0.length)
a[i] = a1[i1++];

else if (i1 == a1.length)
a[i] = a0[i0++];

else if (compare(a0[i0], a1[i1]) < 0)
a[i] = a0[i0++];

200

11. Sorting Algorithms 11.1. Comparison-Based Sorting

2 4 6 85 130 1 3 7 9 10 11 12

1 2 4 53 6 7 8 9 10 11 12 130

8 5 4 02 6 9 7 3 12 1 10 1113

mergeSort(a0,c) mergeSort(a1,c)

9 7 3 12 1 10 11a0 a18 5 4 02 613

a

a

a0 a1

merge(a0,a1,a)

Figure 11.1: The execution of mergeSort(a,c)

else
a[i] = a1[i1++];

}
}

Notice that the merge(a0,a1,a,c) algorithm performs at most n − 1 comparisons before

running out of elements in one of a0 or a1.

To understand the running-time of merge-sort, it is easiest to think of it in terms

of its recursion tree. Suppose for now that n is a power of 2, so that n = 2logn, and logn is

an integer. Refer to Figure 11.2. Merge-sort turns the problem of sorting n elements into

2 problems, each of sorting n/2 elements. These two subproblem are then turned into 2

problems each, for a total of 4 subproblems, each of size n/4. These 4 subproblems become

8 subproblems, each of size n/8, and so on. At the bottom of this process, n/2 subproblems,

each of size 2, are converted into n problems, each of size 1. For each subproblem of size

n/2i , the time spent merging and copying data is O(n/2i). Since there are 2i subproblems

of size n/2i , the total time spent working on problems of size 2i , not counting recursive

calls, is

2i ×O(n/2i) =O(n) .

Therefore, the total amount of time taken by merge-sort is

logn∑

i=0

O(n) =O(n logn) .

201

11. Sorting Algorithms 11.1. Comparison-Based Sorting

2

1 1

2

1 1

2

1 1

2

1 1

2

1 1

2

n
2

n
2

n

n
4

n
4

n
4

n
4

n
8

n
8

n
8

n
8

n
8

n
8

n
8

n
8

...
...

...
...

...
...

...
...

+ + +

+ + + + + + +

+ + + + + +· · ·

+ + + + + +1 1 = n

= n

= n

= n

= n

= n

+ + + ++ +· · ·

Figure 11.2: The merge-sort recursion tree.

The proof of the following theorem is based on the same analysis as above, but has

to be a little more careful to deal with the cases where n is not a power of 2.

Theorem 11.1. The mergeSort(a,c) algorithm runs in O(n logn) time and performs at most

n logn comparisons.

Proof. The proof is by induction on n. The base case, in which n = 1, is trivial; when

presented with an array of length 0 or 1 the algorithm simply returns without performing

any comparisons.

Merging two sorted lists of total length n requires at most n − 1 comparisons. Let

C(n) denote the maximum number of comparisons performed by mergeSort(a,c) on an

array a of length n. If n is even, then we apply the inductive hypothesis to the two sub-

problems and obtain

C(n) ≤ n− 1 + 2C(n/2)

≤ n− 1 + 2((n/2)log(n/2))

= n− 1 + n log(n/2)

= n− 1 + n logn− n
< n logn .

202

11. Sorting Algorithms 11.1. Comparison-Based Sorting

The case where n is odd is slightly more complicated. For this case, we use two inequalities,

that are easy to verify:

log(x+ 1) ≤ log(x) + 1 , (11.1)

for all x ≥ 1 and

log(x+ 1/2) + log(x − 1/2) ≤ 2log(x) , (11.2)

for all x ≥ 1/2. Inequality (11.1) comes from the fact that log(x) + 1 = log(2x) while (11.2)

follows from the fact that log is a concave function. With these tools in hand we have, for

odd n,

C(n) ≤ n− 1 +C(dn/2e) +C(bn/2c)
≤ n− 1 + dn/2e logdn/2e+ bn/2c logbn/2c
= n− 1 + (n/2 + 1/2)log(n/2 + 1/2) + (n/2− 1/2)log(n/2− 1/2)

≤ n− 1 + n log(n/2) + (1/2)(log(n/2 + 1/2)− log(n/2− 1/2))

≤ n− 1 + n log(n/2) + 1/2

< n+ n log(n/2)

= n+ n(logn− 1)

= n logn .

11.1.2 Quicksort

The quicksort algorithm is another classic divide and conquer algorithm. Unlike merge-

sort, which does merging after solving the two subproblems, quicksort does all its work

upfront.

Quicksort is simple to describe: Pick a random pivot element, x, from a; partition a

into the set of elements less than x, the set of elements equal to x, and the set of elements

greater than x; and, finally, recursively sort the first and third sets in this partition. An

example is shown in Figure 11.3.
Algorithms

<T> void quickSort(T[] a, Comparator<T> c) {
quickSort(a, 0, a.length, c);

}
<T> void quickSort(T[] a, int i, int n, Comparator<T> c) {
if (n <= 1) return;
T x = a[i + rand.nextInt(n)];
int p = i-1, j = i, q = i+n;
// a[i..p]<x, a[p+1..q-1]??x, a[q..i+n-1]>x

203

11. Sorting Algorithms 11.1. Comparison-Based Sorting

8 5 4 02 6 71 3

8 5 4 02 6 7 3 12 1 10 1113 9

1 2 4 53 6 8 9 10 11 12 130 7

quickSort(a,10,4)

1 2 4 53 6 70 8 10 11 12 139

quickSort(a,0,9)

12 10 11 139

x

Figure 11.3: An example execution of quickSort(a,0,14,c)

while (j < q) {
int comp = compare(a[j], x);
if (comp < 0) { // move to beginning of array
swap(a, j++, ++p);

} else if (comp > 0) {
swap(a, j, --q); // move to end of array

} else {
j++; // keep in the middle

}
}
// a[i..p]<x, a[p+1..q-1]=x, a[q..i+n-1]>x
quickSort(a, i, p-i+1, c);
quickSort(a, q, n-(q-i), c);

}

All of this is done in-place, so that instead of making copies of subarrays being sorted,

the quickSort(a,i,n,c) method only sorts the subarray a[i], . . . ,a[i+ n− 1]. Initially, this

method is called as quickSort(a,0,a.length,c).

At the heart of the quicksort algorithm is the in-place partitioning algorithm. This

algorithm, without using any extra space, swaps elements in a and computes indices p and

q so that

a[i]



< x if 0 ≤ i ≤ p
= x if p < i < q

> x if q ≤ i ≤ n− 1

This partitioning, which is done by the while loop in the code, works by iteratively in-

creasing p and decreasing q while maintaining the first and last of these conditions. At

204

11. Sorting Algorithms 11.1. Comparison-Based Sorting

each step, the element at position j is either moved to the front, left where it is, or moved

to the back. In the first two cases, j is incremented, while in the last case, j is not incre-

mented since the new element at position j has not been processed yet.

Quicksort is very closely related to the random binary search trees studied in Sec-

tion 7.1. In fact, if the input to quicksort consists of n distinct elements, then the quicksort

recursion tree is a random binary search tree. To see this, recall that when constructing a

random binary search tree the first thing we do is pick a random element x and make it the

root of the tree. After this, every element will eventually be compared to x, with smaller

elements going into the left subtree and larger elements going into the right subtree.

In quicksort, we select a random element x and immediately compare everything

to x, putting the smaller elements at the beginning of the array and larger elements at the

end of the array. Quicksort then recursively sorts the beginning of the array and the end

of the array, while the random binary search tree recursively inserts smaller elements in

the left subtree of the root and larger elements in the right subtree of the root.

The above correspondence between random binary search trees and quicksort means

that we can translate Lemma 7.1 to a statement about quicksort:

Lemma 11.1. When quicksort is called to sort an array containing the integers 0, . . . ,n− 1, the

expected number of times element i is compared to a pivot element is at most Hi+1 +Hn−i.

A little summing of harmonic numbers gives us the following theorem about the

running time of quicksort:

Theorem 11.2. When quicksort is called to sort an array containing n distinct elements, the

expected number of comparisons performed is at most 2n lnn+O(n).

Proof. Let T be the number of comparisons performed by quicksort when sorting n distinct

elements. Using Lemma 11.1, we have:

E[T] =
n−1∑

i=0

(Hi+1 +Hn−i)

= 2
n∑

i=1

Hi

≤ 2
n∑

i=1

Hn

≤ 2n lnn+ 2n = 2n lnn+O(n)

205

11. Sorting Algorithms 11.1. Comparison-Based Sorting

Theorem 11.3 describes the case where the elements being sorted are all distinct.

When the input array, a, contains duplicate elements, the expected running time of quick-

sort is no worse, and can be even better; any time a duplicate element x is chosen as a

pivot, all occurrences of x get grouped together and don’t take part in either of the two

subproblems.

Theorem 11.3. The quickSort(a,c) method runs in O(n logn) expected time and the expected

number of comparisons it performs is at most 2n lnn+O(n).

11.1.3 Heap-sort

The heap-sort algorithm is another in-place sorting algorithm. Heap-sort uses the binary

heaps discussed in Section 10.1. Recall that the BinaryHeap data structure represents a

heap using a single array. The heap-sort algorithm converts the input array a into a heap

and then repeatedly extracts the minimum value.

More specifically, a heap stores n elements at array locations a[0], . . . ,a[n− 1] with

the smallest value stored at the root, a[0]. After transforming a into a BinaryHeap, the

heap-sort algorithm repeatedly swaps a[0] and a[n− 1], decrements n, and calls trickleDown(0)

so that a[0], . . . ,a[n− 2] once again are a valid heap representation. When this process ends

(because n = 0) the elements of a are stored in decreasing order, so a is reversed to obtain

the final sorted order.1 Figure 11.1.3 shows an example of the execution of heapSort(a,c).

BinaryHeap
<T> void sort(T[] a, Comparator<T> c) {
BinaryHeap<T> h = new BinaryHeap<T>(a, c);
while (h.n > 1) {

h.swap(--h.n, 0);
h.trickleDown(0);

}
Collections.reverse(Arrays.asList(a));

}

A key subroutine in heap sort is the constructor for turning an unsorted array

a into a heap. It would be easy to do this in O(n logn) time by repeatedly calling the

BinaryHeap add(x) method, but we can do better by using a bottom-up algorithm. Recall

that, in a binary heap, the children of a[i] are stored at positions a[2i+ 1] and a[2i+ 2].

This implies that the elements a[bn/2c], . . . ,a[n− 1] have no children. In other words, each

1The algorithm could alternatively redefine the compare(x,y) function so that the heap sort algorithm stores

the elements directly in ascending order.

206

11. Sorting Algorithms 11.1. Comparison-Based Sorting

9 6 13 810 7 11 125

11

10

12

9

13

5

78

6

4 2 1 03

1 2 4 53 6 8 11 12 13 14 150 7

Figure 11.4: A snapshot of the execution of heapSort(a,c). The shaded part of the array is

already sorted. The unshaded part is a BinaryHeap. During the next iteration, element 5

will be placed into array location 8.

of a[bn/2c], . . . ,a[n− 1] is a sub-heap of size 1. Now, working backwards, we can call

trickleDown(i) for each i ∈ {bn/2c − 1, . . . ,0}. This works, because by the time we call

trickleDown(i), each of the two children of a[i] are the root of a sub-heap so calling

trickleDown(i) makes a[i] into the root of its own subheap.
BinaryHeap

BinaryHeap(T[] a, Comparator<T> c) {
this.c = c;
this.a = a;
n = a.length;
for (int i = n/2-1; i >= 0; i--) {

trickleDown(i);
}

}

The interesting thing about this bottom-up strategy is that it is more efficient than

calling add(x) n times. To see this, notice that, for n/2 elements, we do no work at all, for

n/4 elements, we call trickleDown(i) on a subheap rooted at a[i] and whose height is 1,

for n/8 elements, we call trickleDown(i) on a subheap whose height is 2, and so on. Since

the work done by trickleDown(i) is proportional to the height of the sub-heap rooted at

a[i], this means that the total work done is at most

logn∑

i=1

O((i − 1)n/2i) ≤
∞∑

i=1

O(in/2i) =O(n)
∞∑

i=1

i/2i =O(2n) =O(n) .

The second-last equality follows by recognizing that the sum
∑∞
i=1 i/2

i is equal, by defini-

207

11. Sorting Algorithms 11.1. Comparison-Based Sorting

tion, to the expected number times we toss a coin up to and including the first time the

coin comes up as heads and applying Lemma 4.2.

The following theorem describes the performance of heapSort(a,c).

Theorem11.4. The heapSort(a,c) method runs inO(n logn) time and performs at most 2n logn+

O(n) comparisons.

Proof. The algorithm runs in 3 steps: (1) Transforming a into a heap, (2) repeatedly ex-

tracting the minimum element from a, and (3) reversing the elements in a. We have just

argued that step 1 takes O(n) time and performs O(n) comparisons. Step 3 takes O(n) time

and performs no comparisons. Step 2 performs n calls to trickleDown(0). The ith such

call operates on a heap of size n−i and performs at most 2log(n−i) comparisons. Summing

this over i gives
n−i∑

i=0

2log(n− i) ≤
n−i∑

i=0

2logn = 2n logn

Adding the number of comparisons performed in each of the three steps completes the

proof.

11.1.4 A Lower-Bound for Comparison-Based Sorting

We have now seen three comparison-based sorting algorithms that each run in O(n logn)

time. By now, we should be wondering if faster algorithms exist. The short answer to this

question is no. If the only operations allowed on the elements of a are comparisons then

no algorithm can avoid doing roughly n logn comparisons. This is not difficult to prove,

but requires a little imagination. Ultimately, it follows from the fact that

log(n!) = logn+ log(n− 1) + · · ·+ log(1) = n logn−O(n) .

(Proving this fact is left as Exercise 11.11.)

We will first focus our attention on deterministic algorithms like merge-sort and

heap-sort and on a particular fixed value of n. Imagine such an algorithm is being used

to sort n distinct elements. The key to proving the lower-bound is to observe that, for a

deterministic algorithm with a fixed value of n, the first pair of elements that are com-

pared is always the same. For example, in heapSort(a,c), when n is even, the first call to

trickleDown(i) is with i = n/2− 1 and the first comparison is between elements a[n/2− 1]

and a[n− 1].

Since all input elements are distinct, this first comparison has only two possible

outcomes. The second comparison done by the algorithm may depend on the outcome of

208

11. Sorting Algorithms 11.1. Comparison-Based Sorting

a[1] ≶ a[2]

a[0] ≶ a[2]

a[1] < a[0] < a[2]

a[0] ≶ a[1]

a[1] ≶ a[2]

a[0] ≶ a[2]a[0] < a[1] < a[2]

a[0] < a[2] < a[1] a[2] < a[0] < a[1] a[1] < a[2] < a[0] a[2] < a[1] < a[0]

< >

< > < >

< > < >

Figure 11.5: A comparison tree for sorting an array a[0],a[1],a[2] of length n = 3.

the first comparison. The third comparison may depend on the results of the first two, and

so on. In this way, any deterministic comparison-based sorting algorithm can be viewed

as a rooted binary comparison-tree. Each internal node, u, of this tree is labelled with a

pair of indices u.i and u.j. If a[u.i] < a[u.j] the algorithm proceeds to the left subtree,

otherwise it proceeds to the right subtree. Each leaf w of this tree is labelled with a permu-

tation w.p[0], . . . ,w.p[n− 1] of 0, . . . ,n− 1. This permutation represents the permutation that

is required to sort a if the comparison tree reaches this leaf. That is,

a[w.p[0]] < a[w.p[1]] < · · · < a[w.p[n− 1]] .

An example of a comparison tree for an array of size n = 3 is shown in Figure 11.5.

The comparison tree for a sorting algorithm tells us everything about the algo-

rithm. It tells us exactly the sequence of comparisons that will be performed for any input

array, a, having n distinct elements and it tells us how the algorithm will reorder a to sort

it. An immediate consequence of this is that the comparison tree must have at least n!

leaves; if not, then there are two distinct permutations that lead to the same leaf, so the

algorithm does not correctly sort at least one of these permutations.

For example, the comparison tree in Figure 11.6 has only 4 < 3! = 6 leaves. Inspect-

ing this tree, we see that the two input arrays 3,1,2 and 3,2,1 both lead to the rightmost

leaf. On the input 3,1,2 this leaf correctly outputs a[1] = 1,a[2] = 2,a[0] = 3. However, on

the input 3,2,1, this node incorrectly outputs a[1] = 2,a[2] = 1,a[0] = 3. This discussion

leads to the primary lower-bound for comparison-based algorithms.

Theorem 11.5. For any deterministic comparison-based sorting algorithm A and any integer

n ≥ 1, there exists an input array a of length n such that A performs at least log(n!) = n logn−
O(n) comparisons when sorting a.

209

11. Sorting Algorithms 11.1. Comparison-Based Sorting

a[0] ≶ a[2]

a[1] < a[0] < a[2]

a[0] ≶ a[1]

a[1] ≶ a[2]

a[0] < a[1] < a[2] a[0] < a[2] < a[1] a[1] < a[2] < a[0]

< >

< > < >

Figure 11.6: A comparison tree that does not correctly sort every input permutation.

Proof. By the above discussion, the comparison tree defined by A must have at least n!

leaves. An easy inductive proof shows that any binary tree with k leaves has height at least

logk. Therefore, the comparison tree for A has a leaf, w, of depth at least log(n!) and there

is an input array a that leads to this leaf. The input array a is an input for which A does at

least log(n!) comparisons.

Theorem 11.5 deals with deterministic algorithms like merge-sort and heap-sort,

but doesn’t tell us anything about randomized algorithms like quicksort. Could a random-

ized algorithm beat the log(n!) lower bound on the number of comparisons? The answer,

again, is no. Again, the way to prove it is to think differently about what a randomized

algorithm is.

In the following discussion, we will implicitly assume that our decision trees have

been “cleaned up” in the following way: Any node that can not be reached by some input

array a is removed. This cleaning up implies that the tree has exactly n! leaves. It has at

least n! leaves because, otherwise, it could not sort correctly. It has at most n! leaves since

each of the possible n! permutation of n distinct elements follows exactly one root to leaf

path in the decision tree.

We can think of a randomized sorting algorithm R as a deterministic algorithm

that takes two inputs: The input array a that should be sorted and a long sequence b =

b1,b2,b3, . . . , bm of random real numbers in the range [0,1]. The random numbers provide

the randomization. When the algorithm wants to toss a coin or make a random choice, it

does so by using some element from b. For example, to compute the index of the first pivot

in quicksort, the algorithm could use the formula bnb1c.
Now, notice that if we fix b to some particular sequence b̂ then R becomes a de-

terministic sorting algorithm, R(b̂), that has an associated comparison tree, T (b̂). Next,

notice that if we select a to be a random permutation of {1, . . . ,n}, then this is equivalent to

210

11. Sorting Algorithms 11.2. Counting Sort and Radix Sort

selecting a random leaf, w, from the n! leaves of T (b̂).

Exercise 11.13 asks you to prove that, if we select a random leaf from any binary

tree with k leaves, then the expected depth of that leaf is at least logk. Therefore, the

expected number of comparisons performed by the (deterministic) algorithm R(b̂) when

given an input array containing a random permutation of {1, . . . ,n} is at least log(n!). Fi-

nally, notice that this is true for every choice of b̂, therefore it holds even for R. This

completes the proof of the lower-bound for randomized algorithms.

Theorem 11.6. For any (deterministic or randomized) comparison-based sorting algorithm A
and any integer n ≥ 1, the expected number of comparisons done by A when sorting a random

permutation of {1, . . . ,n} is at least log(n!) = n logn−O(n).

11.2 Counting Sort and Radix Sort

In this section we consider two sorting algorithms that are not comparison-based. These

algorithms are specialized for sorting small integers. These algorithms get around the

lower-bounds of Theorem 11.5 by using (parts of) the elements of a as indices into an

array. Consider a statement of the form

c[a[i]] = 1 .

This statement executes in constant time, but has c.length possible different outcomes,

depending on the value of a[i]. This means that the execution of an algorithm that makes

such a statement can not be modelled as a binary tree. Ultimately, this is the reason that

the algorithms in this section are able to sort faster than comparison-based algorithms.

11.2.1 Counting Sort

Suppose we have an input array a consisting of n integers, each in the range 0, . . . ,k−1. The

counting-sort algorithm sorts a using an auxiliary array c of counters. It outputs a sorted

version of a as an auxiliary array b.

The idea behind counting-sort is simple: For each i ∈ {0, . . . ,k−1}, count the number

of occurrences of i in a and store this in c[i]. Now, after sorting, the output will look like

c[0] occurrences of 0, followed by c[1] occurrences of 1, followed by c[2] occurrences of

2,. . . , followed by c[k− 1] occurrences of k− 1. The code that does this is very slick, and its

execution is illustrated in Figure 11.7:
Algorithms

int[] countingSort(int[] a, int k) {
int c[] = new int[k];

211

11. Sorting Algorithms 11.2. Counting Sort and Radix Sort

7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9

3 2 3 1 2 1 1 2 0 5

0 1 2 3 4 5 6 7 8 9

c

a

3 5 8 9 11 12 13 15 15 20c′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 1 1 2 2 2 3 4 4 5 6 7 7 9 9 9 9 9b

7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9a

3 5 8 9 11 12 13 15 20c′
0 1 2 3 4 5 6 78 9

Figure 11.7: The operation of counting sort on an array of length n = 20 that stores integers

0, . . . ,k− 1 = 9.

for (int i = 0; i < a.length; i++)
c[a[i]]++;

for (int i = 1; i < k; i++)
c[i] += c[i-1];

int b[] = new int[a.length];
for (int i = a.length-1; i >= 0; i--)

b[--c[a[i]]] = a[i];
return b;

}

The first for loop in this code sets each counter c[i] so that it counts the number

of occurrences of i in a. By using the values of a as indices, these counters can all be

computed in O(n) time with a single for loop. At this point, we could use c to fill in the

output array b directly. However, this would not work if the elements of a have associated

data. Therefore we spend a little extra effort to copy the elements of a into b.

The next for loop, which takesO(k) time, computes a running-sum of the counters

so that c[i] becomes the number of elements in a that are less than or equal to i. In

212

11. Sorting Algorithms 11.2. Counting Sort and Radix Sort

particular, for every i ∈ {0, . . . ,k− 1}, the output array, b, will have

b[c[i− 1]] = b[c[i− 1] + 1] = · · · = b[c[i]− 1] = i .

Finally, the algorithm scans a backwards to put its elements in order into an output array

b. When scanning, the element a[i] = j is placed at location b[c[j]− 1] and the value c[j]

is decremented.

Theorem 11.7. The countingSort(a,k) method can sort an array a containing n integers in

the set {0, . . . ,k− 1} in O(n+ k) time.

The counting-sort algorithm has the nice property of being stable; it preserves the

relative order of elements that are equal. If two elements a[i] and a[j] have the same value,

and i < j then a[i] will appear before a[j] in b. This will be useful in the next section.

11.2.2 Radix-Sort

Counting-sort is very efficient for sorting an array of integers when the length, n, of the

array is not much smaller than the maximum value, k − 1, that appears in the array. The

radix-sort algorithm, which we now describe, uses several passes of counting-sort to allow

for a much greater range of maximum values.

Radix-sort sorts w-bit integers by using w/d passes of counting-sort to sort these

integers d bits at a time.2 More precisely, radix sort first sorts the integers by their least

significant d bits, then their next significant d bits, and so on until, in the last pass, the

integers are sorted by their most significant d bits.
Algorithms

int[] radixSort(int[] a) {
int[] b = null;
for (int p = 0; p < w/d; p++) {

int c[] = new int[1<<d];
// the next three for loops implement counting-sort
b = new int[a.length];
for (int i = 0; i < a.length; i++)
c[(a[i] >> d*p)&((1<<d)-1)]++;

for (int i = 1; i < 1<<d; i++)
c[i] += c[i-1];

for (int i = a.length-1; i >= 0; i--)
b[--c[(a[i] >> d*p)&((1<<d)-1)]] = a[i];

a = b;
}

2We assume that d divides w, otherwise we can always increase w to ddw/de.

213

11. Sorting Algorithms 11.3. Discussion and Exercises

01010001

00000001

11001000

00101000

00001111

11110000

10101010

01010101

11001000

00101000

11110000

01010001

00000001

01010101

10101010

00001111

00000001

11110000

01010101

11001000

00101000

10101010

01010001

00001111

00000001

11001000

00001111

01010001

01010101

00101000

10101010

11110000

00000001

00001111

00101000

01010001

01010101

10101010

11001000

11110000

Figure 11.8: Using radixsort to sort w = 8-bit integers by using 4 passes of counting sort on

d = 2-bit integers.

return b;
}

(In this code, the expression (a[i]>>d ∗ p)&((1<<d)− 1) extracts the integer whose binary

representation is given by bits (p + 1)d − 1, . . . ,pd of a[i].) An example of the steps of this

algorithm is shown in Figure 11.8.

This remarkable algorithm sorts correctly because counting-sort is a stable sorting

algorithm. If x < y are two elements of a and the most significant bit at which x differs

from y has index r, then x will be placed before y during pass br/dc and subsequent passes

will not change the relative order of x and y.

Radix-sort performs w/d passes of counting-sort. Each pass requires O(n+2d) time.

Therefore, the performance of radix-sort is given by the following theorem.

Theorem 11.8. For any integer d > 0, the radixSort(a,k) method can sort an array a contain-

ing n w-bit integers in O((w/d)(n+ 2d)) time.

If we think, instead, of the elements of the array being in the range {0, . . . ,nc − 1},
and take d = dlogne we obtain the following version of Theorem 11.8.

Corollary 11.1. The radixSort(a,k) method can sort an array a containing n integer values

in the range {0, . . . ,nc − 1} in O(cn) time.

11.3 Discussion and Exercises

Sorting is probably the fundamental algorithmic problem in computer science, and has

a long history. Knuth [48] attributes the merge-sort algorithm to von Neumann (1945).

214

11. Sorting Algorithms 11.3. Discussion and Exercises

Quicksort is due to Hoare [39]. The original heap-sort algorithm is due to Williams [76],

but the version presented here (in which the heap is constructed bottom-up in O(n) time)

is due to Floyd [28]. Lower-bounds for comparison-based sorting appear to be folklore.

The following table summarizes the performance of these comparison-based algorithms:

comparisons in-place

Merge-sort n logn worst-case No

Quicksort 1.38n logn+O(n) expected Yes

Heap-sort 2n logn+O(n) worst-case Yes

Each of these comparison-based algorithms has advantages and disadvantages.

Merge-sort does the fewest comparisons and does not rely on randomization. Unfortu-

nately, it uses an auxilliary array during its merge phase. Allocating this array can be

expensive and is a potential point of failure if memory is limited. Quicksort is an in-place

algorithm and is a close second in terms of the number of comparisons, but is randomized

so this running time is not always guaranteed. Heap-sort does the most comparisons, but

it is in-place and deterministic.

There is one setting in which merge-sort is a clear-winner; this occurs when sorting

a linked-list. In this case, the auxiliary array is not needed; two sorted linked lists are very

easily merged into a single sorted linked-list by pointer manipulations (see Exercise 11.2).

The counting-sort and radix-sort algorithms described here are due to Seward [68,

Section 2.4.6]. However, variants of radix-sort have been used since the 1920’s to sort

punch cards using punched card sorting machines. These machines can sort a stack of

cards into two piles based on the existence (or not) of a hole in a specific location on the

card. Repeating this process for different hole locations gives an implementation of radix-

sort.

Finally, we note that counting sort and radix-sort can be used to sort other types of

numbers than non-negative integers. Straightforward modifications of counting sort can

sort integers, from any interval {a, . . . ,b} in O(n+ b − a) time. Similarly, radix sort can sort

these integers in O(n(logn(b − a)) time. Finally, both these algorithms can also be used to

sort floating point numbers in the IEEE 754 floating point format. This is because the IEEE

format was designed to allow comparison of two floating point numbers by comparing

their values as if they were integers in a signed-magnitude binary representation [2].

Exercise 11.1. Illustrate the execution of merge-sort and heap-sort on an input array con-

taining 1,7,4,6,2,8,3,5. Give a sample illustration of one possible execution of quicksort

215

11. Sorting Algorithms 11.3. Discussion and Exercises

on the same array.

Exercise 11.2. Implement a version of the merge-sort algorithm that sorts a DLList with-

out using an auxiliary array. (See Exercise 3.13.)

Exercise 11.3. Some implementations of quickSort(a,i,n,c) always use a[i] as a pivot.

Given an example of an input array of length n in which such an implementation would

perform
(n
2
)

comparisons.

Exercise 11.4. Some implementations of quickSort(a,i,n,c) always use a[i+ n/2] as a

pivot. Given an example of an input array of length n in which such an implementation

would perform
(n
2
)

comparisons.

Exercise 11.5. Show that, for any implementation of quickSort(a,i,n,c) that chooses a

pivot deterministically, without looking at a[i], . . . ,a[i+ n− 1], there exists an input array

of length n that causes this implementation to perform
(n
2
)

comparisons.

Exercise 11.6. Design a Comparator, c, that you could pass as an argument to quickSort(a,i,n,c)

and that would cause quicksort to perform
(n
2
)

comparisons. (Hint: Your comparator does

not actually need to look at the values being compared.)

Exercise 11.7. Analyze the expected number of comparisons done by Quicksort a little

more carefully than the proof of Theorem 11.3. In particular, show that the expected

number of comparisons is 2nHn − n+Hn.

Exercise 11.8. Describe an input array that causes heap sort to perform at least 2n logn−
O(n) comparisons. Justify your answer.

Exercise 11.9. The heap sort implementation described here sorts the elements into re-

verse sorted order and then reverses the array. This last step could be avoided by defining

a new Comparator that negates the results of the input Comparator, c. Explain why this

would not be a good optimization. (Hint: Consider how many negations would needed to

be done in relation to how long it takes to reverse the array.)

Exercise 11.10. Find another pair of permutations of 1,2,3 that are not correctly sorted by

the comparison-tree in Figure 11.6.

Exercise 11.11. Prove that logn! = n logn−O(n).

Exercise 11.12. Prove that a binary tree with k leaves has height at least logk.

216

11. Sorting Algorithms 11.3. Discussion and Exercises

Exercise 11.13. Prove that, if we pick a random leaf from a binary tree with k leaves, then

the expected height of this leaf is at least logk.

Exercise 11.14. The implementation of radixSort(a,k) given here works when the input

array, a contains only non-negative integers. Extend this implementation so that it also

works correctly when a contains both negative and non-negative integers.

217

11. Sorting Algorithms 11.3. Discussion and Exercises

218

Chapter 12

Graphs

In this chapter, we study two representations of graphs and basic algorithms on these

representations.

Mathematically, a (directed) graph is a pairG = (V ,E) where V is a set of vertices and

E is a set of ordered pairs of vertices called edges. An edge (i,j) is directed from i to j; i is

called the source of the edge and j is called the target. A path in G is a sequence of vertices

v0, . . . , vk such that, for every i ∈ {1, . . . , k}, the edge (vi−1,vi) is in E. A path v0, . . . , vk is a

cycle if, additionally, the edge (vk ,v0) is in E. A path (or cycle) is simple if all of its vertices

are unique. If there is a path from some vertex vi to some vertex vj then we say that vj is

reachable from vi . An example of a graph is shown in Figure 12.1.

Graphs have an enormous number of applications, due to their ability to model so

many phenomena. There are many obvious examples. Computer networks can be mod-

elled as graphs, with vertices corresponding to computers and edges corresponding to (di-

rected) communication links between those computers. Street networks can be modelled

as graphs, with vertices representing intersections and edges representing streets joining

consecutive intersections.

Less obvious examples occur as soon as we realize that graphs can model any pair-

wise relationships within a set. For example, in a university setting we might have a

timetable conflict graph whose vertices represent courses offered in the university and

in which the edge (i,j) is present if and only if there is at least one student that is tak-

ing both class i and class j. Thus, an edge indicates that the exam for class i can not be

scheduled at the same time as the exam for class j.

Throughout this section, we will use n to denote the number of vertices of G and

m to denote the number of edges of G. That is, n = |V | and m = |E|. Furthermore, we will

assume that V = {0, . . . ,n − 1}. Any other data that we would like to associate with the

219

12. Graphs

0 1 2 3

7654

8 9 10 11

Figure 12.1: A graph with 12 vertices. Vertices are drawn as numbered circles and edges

are drawn as pointed curves pointing from source to target.

elements of V can be stored in an array of length n.

Some typical operations performed on graphs are:

• addEdge(i,j): Add the edge (i,j) to E.

• removeEdge(i,j): Remove the edge (i,j) from E.

• hasEdge(i,j): Check if the edge (i,j) ∈ E

• outEdges(i): Return a List of all integers j such that (i,j) ∈ E

• inEdges(i): Return a List of all integers j such that (j,i) ∈ E

Note that these operations are not terribly difficult to implement efficiently. For ex-

ample, the first three operations can be implemented directly by using a USet, so they can

be implemented in constant expected time using the hash tables discussed in Chapter 5.

The last two operations can be implemented in constant time by storing, for each vertex, a

list of its adjacent vertices.

However, different applications of graphs have different performance requirements

for these operations and, ideally, we can use the simplest implementation that satisfies all

the application’s requirements. For this reason, we discuss two broad categories of graph

representations.

220

12. Graphs 12.1. AdjacencyMatrix: Representing a Graph by a Matrix

12.1 AdjacencyMatrix: Representing a Graph by a Matrix

An adjacency matrix is a way of representing an n vertex graphG = (V ,E) by an n×n matrix,

a, whose entries are boolean values.
AdjacencyMatrix

int n;
boolean[][] a;
AdjacencyMatrix(int n0) {
n = n0;
a = new boolean[n][n];

}

The matrix entry a[i][j] is defined as

a[i][j] =


true if (i,j) ∈ E
false otherwise

The adjacency matrix for the graph in Figure 12.1 is shown in Figure 12.2.

With this representation, the addEdge(i,j), removeEdge(i,j), and hasEdge(i,j) op-

erations just involve setting or reading the matrix entry a[i][j]:
AdjacencyMatrix

void addEdge(int i, int j) {
a[i][j] = true;

}
void removeEdge(int i, int j) {
a[i][j] = false;

}
boolean hasEdge(int i, int j) {
return a[i][j];

}

These operations clearly take constant time per operation.

Where the adjacency matrix performs poorly is with the outEdges(i) and inEdges(i)

operations. To implement these, we must scan all n entries in the corresponding row or

column of a and gather up all the indices, j, where a[i][j], respectively a[j][i], is true.
AdjacencyMatrix

List<Integer> outEdges(int i) {
List<Integer> edges = new ArrayList<Integer>();
for (int j = 0; j < n; j++)

if (a[i][j]) edges.add(j);
return edges;

}

221

12. Graphs 12.1. AdjacencyMatrix: Representing a Graph by a Matrix

0 1 2 3

7654

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 0 0 1 0 0 0 0 0 0 0

1 1 0 1 0 0 1 1 0 0 0 0 0

2 1 0 0 1 0 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0 1 0 0 0 0

4 1 0 0 0 0 1 0 0 1 0 0 0

5 0 1 1 0 1 0 1 0 0 1 0 0

6 0 0 1 0 0 1 0 1 0 0 1 0

7 0 0 0 1 0 0 1 0 0 0 0 1

8 0 0 0 0 1 0 0 0 0 1 0 0

9 0 0 0 0 0 1 0 0 1 0 1 0

10 0 0 0 0 0 0 1 0 0 1 0 1

11 0 0 0 0 0 0 0 1 0 0 1 0

Figure 12.2: A graph and its adjacency matrix.

222

12. Graphs 12.1. AdjacencyMatrix: Representing a Graph by a Matrix

List<Integer> inEdges(int i) {
List<Integer> edges = new ArrayList<Integer>();
for (int j = 0; j < n; j++)

if (a[j][i]) edges.add(j);
return edges;

}

These operations clearly take O(n) time per operation.

Another drawback of the adjacency matrix representation is that it is big. It stores

an n×n boolean matrix, so it requires at least n2 bits of memory. The implementation here

uses a matrix of boolean values so it actually uses on the order of n2 bytes of memory.

A more careful implementation, that packs w boolean values into each word of memory

could reduce this space usage to O(n2/w) words of memory.

Theorem 12.1. The AdjacencyMatrix data structure implements the Graph interface. An

AdjacencyMatrix supports the operations

• addEdge(i,j), removeEdge(i,j), and hasEdge(i,j) in constant time per operation; and

• inEdges(i), and outEdges(i) in O(n) time per operation.

The space used by an AdjacencyMatrix is O(n2).

Despite the high memory usage and poor performance of the inEdges(i) and outEdges(i)

operations, an AdjacencyMatrix can still be useful for some applications. In particular,

when the graph G is dense, i.e., it has close to n2 edges, then a memory usage of n2 may be

acceptable.

The AdjacencyMatrix data structure is also commonly used because algebraic op-

erations on the matrix a can be used to efficiently compute properties of the graph G.

This is a topic for a course on algorithms, but we point out one such property here: If we

treat the entries of a as integers (1 for true and 0 for false) and multiply a by itself us-

ing matrix multiplication then we get the matrix a2. Recall, from the definition of matrix

multiplication, that

a2[i][j] =
n−1∑

k=0

a[i][k] · a[k][j] .

Interpreting this sum in terms of the graph G, this formula counts the number of vertices,

k, such that G contains both edges (i,k) and (k,j). That is, it counts the number of paths

from i to j (through intermediate vertices, k) that have length exactly 2. This observation

223

12. Graphs 12.2. AdjacencyLists: A Graph as a Collection of Lists

is the foundation of an algorithm that computes the shortest paths between all pairs of

vertices in G using only O(logn) matrix multiplications.

12.2 AdjacencyLists: A Graph as a Collection of Lists

Adjacency list representations takes a more vertex-centric approach. There are many differ-

ent possible implementations of adjacency lists. In this section, we present a simple one.

At the end of the section, we discuss different possibilities. In an adjacency list represen-

tation, the graph G = (V ,E) is represented as an array, adj, of lists. The list adj[i] contains

a list of all the vertices adjacent to vertex i. That is, it contains every index j such that

(i,j) ∈ E.
AdjacencyLists

int n;
List<Integer>[] adj;
AdjacencyLists(int n0) {
n = n0;
adj = (List<Integer>[])new List[n];
for (int i = 0; i < n; i++)

adj[i] = new ArrayStack<Integer>(Integer.class);
}

(An example is shown in Figure 12.3.) In this particular implementation, we represent

each list in adj as an ArrayStack, because we would like constant time access by position.

Other options are also possible. Specifically, we could have implemented adj as a DLList.

The addEdge(i,j) operation just appends the value j to the list adj[i]:
AdjacencyLists

void addEdge(int i, int j) {
adj[i].add(j);

}

This takes constant time.

The removeEdge(i,j) operation searches through the list adj[i] until it finds j and

then removes it:
AdjacencyLists

void removeEdge(int i, int j) {
Iterator<Integer> it = adj[i].iterator();
while (it.hasNext()) {

if (it.next() == j) {
it.remove();
return;

}

224

12. Graphs 12.2. AdjacencyLists: A Graph as a Collection of Lists

0 1 2 3

7654

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

1 0 1 2 0 1 5 6 4 8 9 10

4 2 3 7 5 2 2 3 9 5 6 7

6 6 8 6 7 11 10 11

5 9 10

4

Figure 12.3: A graph and its adjacency lists

}
}

This takes O(deg(i)) time, where deg(i) (the degree of i) counts the number of edges in E

that have i as their source.

The hasEdge(i,j) operation is similar; it searches through the list adj[i] until it

finds j (and returns true), or reaches the end of the list (and returns false):
AdjacencyLists

boolean hasEdge(int i, int j) {
return adj[i].contains(j);

}

This also takes O(deg(i)) time.

The outEdges(i) operation is very simple; It simply returns the list adj[i]:
AdjacencyLists

List<Integer> outEdges(int i) {
return adj[i];

}

225

12. Graphs 12.2. AdjacencyLists: A Graph as a Collection of Lists

This clearly takes constant time.

The inEdges(i) operation is much more work. It scans over every vertex j checking

if the edge (i,j) exists and, if so, adding j to the output list:
AdjacencyLists

List<Integer> inEdges(int i) {
List<Integer> edges = new ArrayStack<Integer>(Integer.class);
for (int j = 0; j < n; j++)

if (adj[j].contains(i)) edges.add(j);
return edges;

}

This operation is very slow. It scans the adjacency list of every vertex, so it takes O(n+ m)

time.

The following theorem summarizes the performance of the above data structure:

Theorem 12.2. The AdjacencyLists data structure implements the Graph interface. An Ad-

jacencyLists supports the operations

• addEdge(i,j) in constant time per operation;

• removeEdge(i,j) and hasEdge(i,j) in O(deg(i)) time per operation;

• outEdges(i) in constant time per operation; and

• inEdges(i) in O(n+ m) time per operation.

The space used by a AdjacencyLists is O(n+ m).

As alluded to earlier, there are many different choices to be made when implement-

ing a graph as an adjacency list. Some questions that come up include:

• What type of collection should be used to store each element of adj? One could use

an array-based list, a linked-list, or even a hashtable.

• Should there be a second adjacency list, inadj, that stores, for each i, the list of

vertices, j, such that (j,i) ∈ E? This can greatly reduce the running-time of the

inEdges(i) operation, but requires slightly more work when adding or removing

edges.

• Should the entry for the edge (i,j) in adj[i] be linked by a reference to the corre-

sponding entry in inadj[j]?

226

12. Graphs 12.3. Graph Traversal

• Should edges be first-class objects with their own associated data? In this way, adj

would contain lists of edges rather than lists of vertices (integers).

Most of these questions come down to a tradeoff between complexity (and space) of im-

plementation and performance features of the implementation.

12.3 Graph Traversal

In this section we present two algorithms for exploring a graph, starting at one of its ver-

tices, i, and finding all vertices that are reachable from i. Both of these algorithms are

best suited to graphs represented using an adjacency list representation. Therefore, when

analyzing these algorithms we will assume that the underlying representation is as an Ad-

jacencyLists.

12.3.1 Breadth-First Search

The bread-first-search algorithm starts at a vertex i and visits, first the neighbours of i,

then the neighbours of the neighbours of i, then the neighbours of the neighbours of the

neighbours of i, and so on.

This algorithm is a generalization of the breadth-first-search algorithm for binary

trees (Section 6.1.2), and is very similar; it uses a queue, q, that initially contains only i.

It then repeatedly extracts an element from q and adds its neighbours to q, provided that

these neighbours have never been in q before. The only major difference between breadth-

first-search for graphs and for trees is that the algorithm for graphs has to ensure that

it does not add the same vertex to q more than once. It does this by using an auxiliary

boolean array, seen, that keeps track of which vertices have already been discovered.

Algorithms
void bfs(Graph g, int r) {
boolean[] seen = new boolean[g.nVertices()];
Queue<Integer> q = new SLList<Integer>();
q.add(r);
seen[r] = true;
while (!q.isEmpty()) {

int i = q.remove();
for (Integer j : g.outEdges(i)) {
if (!seen[j]) {
q.add(j);
seen[j] = true;

}
}

}

227

12. Graphs 12.3. Graph Traversal

0 1 3 7

8452

6 10 9 11

Figure 12.4: An example of bread-first-search starting at node 0. Nodes are labelled with

the order in which they are added to q. Edges that result in nodes being added to q are

drawn in black, other edges are drawn in grey.

}

An example of running bfs(g,0) on the graph from Figure 12.1 is shown in Figure 12.4.

Different executions are possible, depending on the ordering of the adjacency lists; Fig-

ure 12.4 uses the adjacency lists in Figure 12.3.

Analyzing the running-time of the bfs(g,i) routine is fairly straightforward. The

use of the seen array ensures that no vertex is added to q more than once. Adding (and

later removing) each vertex from q takes constant time per vertex for a total of O(n) time.

Since each vertex is processed at most once by the inner loop, each adjacency list is pro-

cessed at most once, so each edge of G is processed at most once. This processing, which is

done in the inner loop takes constant time per iteration, for a total ofO(m) time. Therefore,

the entire algorithm runs in O(n+ m) time.

The following theorem summarizes the performance of the bfs(g,r) algorithm.

Theorem 12.3. When given as input a Graph, g, that is implemented using the Adjacen-

cyLists data structure, the bfs(g,r) algorithm runs in O(n+ m) time.

A breadth-first traversal has some very special properties. Calling bfs(g,r) will

eventually enqueue (and eventually dequeue) every vertex j such that there is a directed

path from r to j. Moreover, the vertices at distance 0 from r (r itself) will enter q before the

vertices at distance 1, which will enter q before the vertices at distance 2, and so on. Thus,

the bfs(g,r) method visits vertices in increasing order of distance from r and vertices that

228

12. Graphs 12.3. Graph Traversal

can not be reached from r are never output at all.

A particularly useful application of the breadth-first-search algorithm is, therefore,

in computing shortest paths. To compute the shortest path from r to every other vertex,

we use a variant of bfs(g,r) that uses an auxilliary array, p, of length n. When a new vertex

j is added to q, we set p[j] = i. In this way, p[j] becomes the second last node on a shortest

path from r to j. Repeating this, by taking p[p[j], p[p[p[j]]], and so on we can reconstruct

the (reversal of) a shortest path from r to j.

12.3.2 Depth-First Search

The depth-first-search algorithm is similar to the standard algorithm for traversing binary

trees; it first fully explores one subtree before returning to the current node and then

exploring the other subtree. Another way to think of depth-first-search is by saying that it

is similar to breadth-first search except that it uses a stack instead of a queue.

During the execution of the depth-first-search algorithm, each vertex, i, is assigned

a color, c[i]: white if we have never seen the vertex before, grey if we are currently visiting

that vertex, and black if we are done visiting that vertex. The easiest way to think of depth-

first-search is as a recursive algorithm. It starts by visiting r. When visiting a vertex i, we

first mark i as grey. Next, we scan i’s adjacency list and recursively visit any white vertex

we find in this list. Finally, we are done processing i, so we color i black and return.

Algorithms
void dfs(Graph g, int r) {
byte[] c = new byte[g.nVertices()];
dfs(g, r, c);

}
void dfs(Graph g, int i, byte[] c) {
c[i] = grey; // currently visiting i
for (Integer j : g.outEdges(i)) {

if (c[j] == white) {
c[j] = grey;
dfs(g, j, c);

}
}
c[i] = black; // done visiting i

}

An example of the execution of this algorithm is shown in Figure 12.5

Although depth-first-search may best be thought of as a recursive algorithm, recur-

sion is not the best way to implement it. Indeed, the code given above will fail for many

229

12. Graphs 12.3. Graph Traversal

0 1 2 3

411109

8 7 6 5

Figure 12.5: An example of depth-first-search starting at node 0. Nodes are labelled with

the order in which they are processed. Edges that result in a recursive call are drawn in

black, other edges are drawn in grey.

large graphs by causing a stack overflow. An alternative implementation is to replace the

recursion stack with an explicit stack, s. The following implementation does just that:
Algorithms

void dfs2(Graph g, int r) {
byte[] c = new byte[g.nVertices()];
Stack<Integer> s = new Stack<Integer>();
s.push(r);
while (!s.isEmpty()) {

int i = s.pop();
if (c[i] == white) {
c[i] = grey;
for (int j : g.outEdges(i))
s.push(j);

}
}

}

In the above code, when next vertex, i, is processed, i is colored grey and then replaced,

on the stack, with its adjacent vertices. During the next iteration, one of these vertices will

be visited.

Not surprisingly, the running times of dfs(g,r) and dfs2(g,r) are the same as that

of bfs(g,r):

Theorem 12.4. When given as input a Graph, g, that is implemented using the Adjacen-

cyLists data structure, the dfs(g,r) and dfs2(g,r) algorithms each run in O(n+ m) time.

230

12. Graphs 12.4. Discussion and Exercises

ij
C

P

Figure 12.6: The depth-first-search algorithm can be used to detect cycles in G.The node

j is colored grey while i is still grey. This implies there is a path, P , from i to j in the

depth-first-search tree, and the edge (j,i) implies that P is also a cycle.

As with the breadth-first-search algorithm, there is an underlying tree associated

with each execution of depth-first-search. When a node i , r goes from white to grey, this

is because dfs(g,i,c) was called recursively while processing some node i′. (In the case of

dfs2(g,r) algorithm, i is one of the nodes that replaced i′ on the stack.) If we think of i′

as the parent of i, then we obtain a tree rooted at r. In Figure 12.5, this tree is a path from

vertex 0 to vertex 11.

An important property of the depth-first-search algorithm is the following: Sup-

pose that when node i is colored grey, there exists a path from i to some other node j that

uses only white vertices. Then j will be colored (first grey then) black before i is colored

black. (This can be proven by contradiction, by considering any path P from i to j.)

One application of this property is the detection of cycles. Refer to Figure 12.6.

Consider some cycle, C, that can be reached from r. Let i be the first node of C that is

colored grey, and let j be the node that precedes i on the cycle C. Then, by the above

property, j will be colored grey and the edge (j,i) will be considered by the algorithm

while i is still grey. Thus, the algorithm can conclude that there is a path, P , from i to j

in the depth-first-search tree and the edge (j,i) exists. Therefore, P is also a cycle.

12.4 Discussion and Exercises

The running times of the depth-first-search and breadth-first-search algorithms are some-

what overstated by the Theorems 12.3 and 12.4. Define nr as the number of vertices, i, of

G, for which there exists a path from r to i. Define mr as the number of edges that have

these vertices as their sources. Then the following theorem is a more precise statement

of the running times of the breadth-first-search and depth-first-search algorithms. (This

more refined statement of the running time is useful in some of the applications of these

algorithms outlined in the exercises.)

231

12. Graphs 12.4. Discussion and Exercises

61

5

0
9

4

7

2
8

3

Figure 12.7: An example graph.

Theorem 12.5. When given as input a Graph, g, that is implemented using the Adjacen-

cyLists data structure, the bfs(g,r), dfs(g,r) and dfs2(g,r) algorithms each run inO(nr+mr)

time.

Breadth-first search seems to have been discovered independently by Moore [52]

and Lee [49] in the contexts of maze exploration and circuit routing, respectively.

Adjacency-list representations of graphs were first popularized by Hopcroft and

Tarjan [40] as an alternative to the (then more common) adjacency-matrix representa-

tion. This representation, and depth-first-search, played a major part in the celebrated

Hopcroft-Tarjan planarity testing algorithm that can determine, in O(n) time, if a graph

can be drawn, in the plane, and in such a way that no pair of edges cross each other [41].

In the following exercises, an undirected graph is one in which, for every i and j,

the edge (i,j) is present if and only if the edge (j,i) is present.

Exercise 12.1. Draw an adjacencly list representation and an adjacency matrix represen-

tation of the graph in Figure 12.7.

Exercise 12.2. The incidence matrix representation of a graph, G, is an n × m matrix, A,

where

Ai,j =



−1 if vertex i the source of edge j

+1 if vertex i the target of edge j

0 otherwise.

1. Draw the incident matrix representation of the graph in Figure 12.7.

232

12. Graphs 12.4. Discussion and Exercises

2. Design, analyze and implement an incidence matrix representation of a graph. Be

sure to analyze the space, the cost of addEdge(i,j), removeEdge(i,j), hasEdge(i,j),

inEdges(i), and outEdges(i).

Exercise 12.3. Illustrate an execution of the bfs(G,0) and dfs(G,0) on the graph, G, in

Figure 12.7.

Exercise 12.4. Let G be an undirected graph. We say G is connected if, for every pair of

vertices i and j in G, there is a path from i to j (since G is undirected, there is also a path

from j to i). Show how to test if G is connected in O(n+ m) time.

Exercise 12.5. Let G be an undirected graph. A connected-component labelling of G parti-

tions the vertices of G into maximal sets, each of which forms a connected subgraph. Show

how to compute a connected component labelling of G in O(n+ m) time.

Exercise 12.6. Let G be an undirected graph. A spanning forest of G is a collection of trees,

one per component, whose edges are edges of G and whose vertices contain all vertices of

G. Show how to compute a spanning forest of of G in O(n+ m) time.

Exercise 12.7. We say that a graph G is strongly-connected if, for every pair of vertices i

and j in G, there is a path from i to j. Show how to test if G is strongly-connected in

O(n+ m) time.

Exercise 12.8. Given a graph G = (V ,E) and some special vertex r ∈ V , show how to

compute the length of the shortest path from r to i for every vertex i ∈ V .

Exercise 12.9. Give a (simple) example where the dfs(g,r) code visits the nodes of a graph

in an order that is different from that of the dfs2(g,r) code. Write a version of dfs2(g,r)

that always visits nodes in exactly the same order as dfs(g,r). (Hint: Just start tracing the

execution of each algorithm on some graph where r is the source of more than 1 edge.)

Exercise 12.10. A universal sink in a graph G is a vertex that is the target of n − 1 edges

and the source of no edges.1 Design and implement an algorithm that tests if a graph G,

represented as an AdjacencyMatrix, has a universal sink. Your algorithm should run in

O(n) time.

1A universal sink, v, is also sometimes called a celebrity: Everyone in the room recognizes v, but v doesn’t

recognize anyone else in the room.

233

12. Graphs 12.4. Discussion and Exercises

234

Chapter 13

Data Structures for Integers

In this chapter, we return to the problem of implementing an SSet. The difference now

is that we assume the elements stored in the SSet are w-bit integers. That is, we want to

implement add(x), remove(x), and find(x) where x ∈ {0, . . . ,2w − 1}. It is not too hard to

think of plenty of applications where the data—or at least the key that we use for sorting

the data—is an integer.

We will discuss three data structures, each building on the ideas of the previous.

The first structure, the BinaryTrie performs all three SSet operations in O(w) time. This

is not very impressive, since any subset of {0, . . . ,2w−1} has size n ≤ 2w, so that logn ≤ w. All

the other SSet implementations discussed in this book perform all operations in O(logn)

time so they are all at least as fast as a BinaryTrie.

The second structure, the XFastTrie, speeds up the search in a BinaryTrie by

using hashing. With this speedup, the find(x) operation runs in O(logw) time. However,

add(x) and remove(x) operations in an XFastTrie still take O(w) time and the space used

by an XFastTrie is O(n · w).

The third data structure, the YFastTrie, uses an XFastTrie to store only a sample

of roughly one out of every w elements and stores the remaining elements a standard SSet

structure. This trick reduces the running time of add(x) and remove(x) to O(logw) and

decreases the space to O(n).

The implementations used as examples in this chapter can store any type of data, as

long an integer can be associated with it. In the code samples, the variable ix is always the

integer value associated with x, and the method in.intValue(x) converts x to its associated

integer. In the text, however, we will simply treat x as if it is an integer.

235

13. Data Structures for Integers 13.1. BinaryTrie: A digital search tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.1: The integers stored in a binary trie are encoded as root-to-leaf paths.

13.1 BinaryTrie: A digital search tree

A BinaryTrie encode a set of w bit integers in a binary tree. All leaves in the tree have

depth w and each integer is encoded as a root-to-leaf path. The path for the integer x turns

left at level i if the ith most significant bit of x is a 0 and turns right if it is a 1. Figure 13.1

shows an example for the case w = 4, in which the trie stores the integers 3(0011), 9(1001),

12(1100), and 13(1101).

Because the search path for a value x depends on the bits of x it will be helpful

to name the children of a node, u, u.child[0] (left) and u.child[1] (right). These child

pointers will actually serve double-duty. Since the leaves in a binary trie have no children,

the pointers are used to string the leaves together into a doubly-linked list. For a leaf in

the binary trie u.child[0] (prev) is the node that comes before u in the list and u.child[1]

(next) is the node that follows u in the list. A special node, dummy, is used both before the

first node and after the last node in the list (see Section 3.2).

Each node, u, also contains an additional pointer u.jump. If u’s left child is missing,

then u.jump points to the smallest leaf in u’s subtree. If u’s right child is missing, then

u.jump points to the largest leaf in u’s subtree. An example of a BinaryTrie, showing jump

pointers and the doubly-linked list at the leaves, is shown in Figure 13.2

The find(x) operation in a BinaryTrie is fairly straightforward. We try to follow

the search path for x in the trie. If we reach a leaf, then we have found x. If, we reach a node

u where we cannot proceed (because u is missing a child) then we follow u.jump, which

takes us either to smallest leaf larger than x or the largest leaf smaller than x. Which of

236

13. Data Structures for Integers 13.1. BinaryTrie: A digital search tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.2: A BinaryTrie with jump pointers shown as curved dashed edges.

these two cases occurs depends on whether u is missing its left or right child, respectively.

In the former case (u is missing its left child), we have found the value we are looking for.

In the latter case (u is missing its right child), we can use the linked list to reach the value

we are looking for. Each of these cases is illustrated in Figure 13.3.
BinaryTrie

T find(T x) {
int i, c = 0, ix = it.intValue(x);
Node u = r;
for (i = 0; i < w; i++) {

c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) break;
u = u.child[c];

}
if (i == w) return u.x; // found it
u = (c == 0) ? u.jump : u.jump.child[next];
return u == dummy ? null : u.x;

}

The running-time of the find(x) method is dominated by the time it takes to follow a

root-to-leaf path, so it runs in O(w) time.

The add(x) operation in a BinaryTrie is fairly straightforward, but it has a lot of

things to take care of:

1. It follows the search path for x until reaching a node u where it can no longer pro-

ceed.

2. It creates the remainder of the search path from u to a leaf that contains x.

237

13. Data Structures for Integers 13.1. BinaryTrie: A digital search tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

find(5) find(8)

Figure 13.3: The paths followed by find(5) and find(8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.4: Adding the values 2 and 15 to the BinaryTrie in Figure 13.2.

3. It adds the node, u′, containing x to the linked list of leaves (it has access to u′’s prede-

cessor, pred, in the linked list from the jump pointer of the last node, u, encountered

during step 1.)

4. It walks back up the search path for x adjusting jump pointers at the nodes whose

jump pointer should now point to x.

An addition is illustrated in Figure 13.4.
BinaryTrie

boolean add(T x) {
int i, c = 0, ix = it.intValue(x);
Node u = r;
// 1 - search for ix until falling out of the trie

238

13. Data Structures for Integers 13.1. BinaryTrie: A digital search tree

for (i = 0; i < w; i++) {
c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) break;
u = u.child[c];

}
if (i == w) return false; // trie already contains x - abort
Node pred = (c == right) ? u.jump : u.jump.child[0]; // save for step 3
u.jump = null; // u will have two children shortly
// 2 - add path to ix
for (; i < w; i++) {

c = (ix >>> w-i-1) & 1;
u.child[c] = newNode();
u.child[c].parent = u;
u = u.child[c];

}
u.x = x;
// 3 - add u to linked list
u.child[prev] = pred;
u.child[next] = pred.child[next];
u.child[prev].child[next] = u;
u.child[next].child[prev] = u;
// 4 - walk back up, updating jump pointers
Node v = u.parent;
while (v != null) {

if ((v.child[left] == null
&& (v.jump == null || it.intValue(v.jump.x) > ix))

|| (v.child[right] == null
&& (v.jump == null || it.intValue(v.jump.x) < ix)))

v.jump = u;
v = v.parent;

}
n++;
return true;

}

This method performs one walk down the search path for x and one walk back up. Each

step of these walks takes constant time, so the add(x) runs in O(w) time.

The remove(x) operation undoes the work of add(x). Like add(x), it has a lot of

things to take care of:

1. It follows the search path for x until reaching the leaf, u, containing x.

2. It removes u from the doubly-linked list

239

13. Data Structures for Integers 13.1. BinaryTrie: A digital search tree

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 11??

000? 001? 010? 011? 101? 110? 111?

10??

9

100?

Figure 13.5: Removing the value 9 from the BinaryTrie in Figure 13.2.

3. It deletes u and then walks back up the search path for x deleting nodes until reach-

ing a node v that has a child that is not on the search path for x

4. It walks upwards from v to the root updating any jump pointers that point to u.

A removal is illustrated in Figure 13.5.
BinaryTrie

boolean remove(T x) {
// 1 - find leaf, u, containing x
int i = 0, c, ix = it.intValue(x);
Node u = r;
for (i = 0; i < w; i++) {

c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) return false;
u = u.child[c];

}
// 2 - remove u from linked list
u.child[prev].child[next] = u.child[next];
u.child[next].child[prev] = u.child[prev];
Node v = u;
// 3 - delete nodes on path to u
for (i = w-1; i >= 0; i--) {

c = (ix >>> w-i-1) & 1;
v = v.parent;
v.child[c] = null;
if (v.child[1-c] != null) break;

}
// 4 - update jump pointers
v.jump = u;

240

13. Data Structures for Integers 13.2. XFastTrie: Searching in Doubly-Logarithmic Time

for (; i >= 0; i--) {
c = (ix >>> w-i-1) & 1;
if (v.jump == u)
v.jump = u.child[1-c];

v = v.parent;
}
n--;
return true;

}

Theorem 13.1. A BinaryTrie implements the SSet interface for w-bit integers. A BinaryTrie

supports the operations add(x), remove(x), and find(x) in O(w) time per operation. The space

used by a BinaryTrie that stores n values is O(n · w).

13.2 XFastTrie: Searching in Doubly-Logarithmic Time

The performance of the BinaryTrie structure is not that impressive. The number of el-

ements, n, stored in the structure is at most 2w, so logn ≤ w. In other words, any of the

comparison-based SSet structures described in other parts of this book are at least as effi-

cient as a BinaryTrie, and don’t have the restriction of only being able to store integers.

Next we describe the XFastTrie, which is just a BinaryTriewith w+ 1 hash tables—

one for each level of the trie. These hash tables are used to speed up the find(x) operation

to O(logw) time. Recall that the find(x) operation in a BinaryTrie is almost complete

once we reach a node, u, where the search path for x would like to proceed to u.right (or

u.left) but u has no right (respectively, left) child. At this point, the search uses u.jump to

jump to a leaf, v, of the BinaryTrie and either return v or its successor in the linked list

of leaves. An XFastTrie speeds up the search process by using binary search on the levels

of the trie to locate the node u.

To use binary search, we need a way to determine if the node u we are looking for

is above a particular level, i, of if u is at or below level i. This information is given by

the highest-order i bits in the binary representation of x; these bits determine the search

path that x takes from the root to level i. For an example, refer to Figure 13.6; in this

figure the last node, u, on search path for 14 (whose binary representation is 1110) is the

node labelled 11?? at level 2 because there is no node labelled 111? at level 3. Thus, we

can label each node at level i with an i-bit integer. Then the node u we are searching

for is at or below level i if and only if there is a node at level i whose label matches the

highest-order i bits of x.

In an XFastTrie, we store, for each i ∈ {0, . . . ,w}, all the nodes at level i in a USet,

241

13. Data Structures for Integers 13.2. XFastTrie: Searching in Doubly-Logarithmic Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0

1

2

3

4

1

1

1

Figure 13.6: The search path for 14 (1110) ends at the node labelled 11?? since there is no

node labelled 111?.

t[i], that is implemented as a hash table (Chapter 5). Using this USet allows us to check in

constant expected time if there is a node at level i whose label matches the highest-order

i bits of x. In fact, we can even find this node using t[i].find(x>>(w− i)).

The hash tables t[0], . . . ,t[w] allow us to use binary search to find u. Initially, we

know that u is at some level i with 0 ≤ i < w+ 1. We therefore initialize l = 0 and h = w+ 1

and repeatedly look at the hash table t[i], where i = b(l+ h)/2c. If t[i] contains a node

whose label matches x’s highest-order i bits then we set l = i (u is at or below level i),

otherwise we set h = i (u is above level i). This process terminates when h− l ≤ 1, in

which case we determine that u is at level l. We then complete the find(x) operation using

u.jump and the doubly-linked list of leaves.

XFastTrie
T find(T x) {
int l = 0, h = w+1, ix = it.intValue(x);
Node v, u = r, q = newNode();
while (h-l > 1) {

int i = (l+h)/2;
q.prefix = ix >>> w-i;
if ((v = t[i].find(q)) == null) {
h = i;

} else {
u = v;
l = i;

}
}
if (l == w) return u.x;

242

13. Data Structures for Integers 13.3. YFastTrie: A Doubly-Logarithmic Time SSet

Node pred = (((ix >>> w-l-1) & 1) == 1) ? u.jump : u.jump.child[0];
return (pred.child[next] == dummy) ? null : pred.child[next].x;

}

Each iteration of the while loop in the above method decreases h− l by roughly a factor of

2, so this loop finds u after O(logw) iterations. Each iteration performs a constant amount

of work and one find(x) operation in a USet, which takes constant expected time. The

remaining work takes only constant time, so the find(x) method in an XFastTrie takes

only O(logw) expected time.

The add(x) and remove(x) methods for an XFastTrie are almost identical to the

same methods in a BinaryTrie. The only modifications are for managing the hash tables

t[0],. . . ,t[w]. During the add(x) operation, when a new node is created at level i, this node

is added to t[i]. During a remove(x) operation, when a node is removed form level i, this

node is removed from t[i]. Since adding and removing from a hash table take constant

expected time, this does not increase the running times of add(x) and remove(x) by more

than a constant factor. We omit a code listing or add(x) and remove(x) since it is almost

identical to the (long) code listing already provided for the same methods in a BinaryTrie.

The following theorem summarizes the performance of an XFastTrie:

Theorem 13.2. An XFastTrie implements the SSet interface for w-bit integers. An XFastTrie

supports the operations

• add(x) and remove(x) in O(w) expected time per operation and

• find(x) in O(logw) expected time per operation.

The space used by an XFastTrie that stores n values is O(n · w).

13.3 YFastTrie: A Doubly-Logarithmic Time SSet

The XFastTrie is a big improvement over the BinaryTrie in terms of query time—some

would even call it an exponential improvement—but the add(x) and remove(x) operations

are still not terribly fast. Furthermore, the space usage, O(n · w), is higher than the other

SSet implementation in this book, which all use O(n) space. These two problems are re-

lated; if n add(x) operations build a structure of size n ·w then the add(x) operation requires

on the order of w time (and space) per operation.

The YFastTrie data structure simultaneously addresses both the space and speed

issues of XFastTries. A YFastTrie uses an XFastTrie, xft, but only stores O(n/w) values

243

13. Data Structures for Integers 13.3. YFastTrie: A Doubly-Logarithmic Time SSet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,3 4,5,8,9 10,11,13

Figure 13.7: A YFastTrie containing the values 0, 1, 3, 4, 6, 8, 9, 10, 11, and 13.

in xft. In this way, the total space used by xft is only O(n). Furthermore, only one out of

every w add(x) or remove(x) operations in the YFastTrie results in an add(x) or remove(x)

operation in xft. By doing this, the average cost incurred by calls to xft’s add(x) and

remove(x) operations is only constant.

The obvious question becomes: If xft only stores n/w elements, where do the re-

maining n(1−1/w) elements go? These elements go into secondary structures, in this case an

extended version of treaps (Section 7.2). There are roughly n/w of these secondary struc-

tures so, on average, each of them storesO(w) items. Treaps support logarithmic time SSet

operations, so the operations on these treaps will run in O(logw) time, as required.

More concretely, a YFastTrie contains an XFastTrie, xft, that contains a random

sample of the data, where each element appears in the sample independently with proba-

bility 1/w. For convenience, the value 2w − 1, is always contained in xft. Let x0 < x1 < · · · <
xk−1 denote the elements stored in xft. Associated with each element, xi , is a treap, ti ,

that stores all values in the range xi−1 + 1, . . . ,xi . This is illustrated in Figure 13.7.

The find(x) operation in a YFastTrie is fairly easy. We search for x in xft and find

some value xi associated with the treap ti . When then use the treap find(x) method on ti
to answer the query. The entire method is a one-liner:

YFastTrie
T find(T x) {
return xft.find(new Pair<T>(it.intValue(x))).t.find(x);

244

13. Data Structures for Integers 13.3. YFastTrie: A Doubly-Logarithmic Time SSet

}

The first find(x) operation (on xft) takes O(logw) time. The second find(x) operation (on

a treap) takes O(logr) time, where r is the size of the treap. Later in this section, we will

show that the expected size of the treap is O(w) so that this operation takes O(logw) time.1

Adding an element to a YFastTrie is also fairly simple—most of the time. The

add(x) method calls xft.find(x) to locate the treap, t, into which x should be inserted. It

then calls t.add(x) to add x to t. At this point, it tosses a biased coin, that comes up heads

with probability 1/w. If this coin comes up heads, x will be added to xft.

This is where things get a little more complicated. When x is added to xft, the

treap t needs to be split into two treaps t1 and t′. The treap t1 contains all the values less

than or equal to x; t′ is the original treap, t, with the elements of t1 removed. Once this

is done we add the pair (x,t1) to xft. Figure 13.8 shows an example.
YFastTrie

boolean add(T x) {
int ix = it.intValue(x);
STreap<T> t = xft.find(new Pair<T>(ix)).t;
if (t.add(x)) {

n++;
if (rand.nextInt(w) == 0) {
STreap<T> t1 = t.split(x);
xft.add(new Pair<T>(ix, t1));

}
return true;

}
return false;

}

Adding x to t takes O(logw) time. Exercise 7.12 shows that splitting t into t1 and t′ can

also be done in O(logw) expected time. Adding the pair (x,t1) to xft takes O(w) time, but

only happens with probability 1/w. Therefore, the expected running time of the add(x)

operation is

O(logw) +
1
w
O(w) =O(logw)

The remove(x) method just undoes the work performed by add(x). We use xft to

find the leaf, u, in xft that contains the answer to xft.find(x). From u, we get the treap, t,

containing x and remove x from t. If x was also stored in xft (and x is not equal to 2w −1)

1This is an application of Jensen’s Inequality: If E[r] = w, then E[logr] ≤ logw.

245

13. Data Structures for Integers 13.3. YFastTrie: A Doubly-Logarithmic Time SSet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,2,3 4,5,8,9 10,11,134,5,6 8,9

Figure 13.8: Adding the values 2 and 6 to a YFastTrie. The coin toss for 6 came up heads,

so 6 was added to xft and the treap containing 4,5,6,8,9 was split.

then we remove x from xft and add the elements from x’s treap to the treap, t2, that is

stored by u’s successor in the linked list. This is illustrated in Figure 13.9.
YFastTrie

boolean remove(T x) {
int ix = it.intValue(x);
Node<T> u = xft.findNode(ix);
boolean ret = u.x.t.remove(x);
if (ret) n--;
if (u.x.x == ix && ix != 0xffffffff) {

STreap<T> t2 = u.child[1].x.t;
t2.absorb(u.x.t);
xft.remove(u.x);

}
return ret;

}

Finding the node u in xft takes O(logw) expected time. Removing x from t takes O(logw)

expected time. Again, Exercise 7.12 shows that merging all the elements of t into t2 can

be done in O(logw) time. If necessary, removing x from xft takes O(w) time, but x is only

contained in xft with probability 1/w. Therefore, the expected time to remove an element

from a YFastTrie is O(logw).

Earlier in the discussion, we put off arguing about the sizes of treaps in this struc-

246

13. Data Structures for Integers 13.3. YFastTrie: A Doubly-Logarithmic Time SSet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,2,3 8,10,11,134,5,6 8,9

Figure 13.9: Removing the values 1 and 9 from a YFastTrie in Figure 13.8.

ture until later. Before finishing we prove the result we need.

Lemma 13.1. Let x be an integer stored in a YFastTrie and let nx denote the number of ele-

ments in the treap, t, that contains x. Then E[nx] ≤ 2w− 1.

Proof. Refer to Figure 13.10. Let x1 < x2 < · · · < xi = x < · · · < xn denote the elements stored

in the YFastTrie. The treap t contains some elements greater than or equal to x. These

are xi ,xi+1, . . . ,xi+j−1, where xi+j−1 is the only one of these elements in which the biased

coin toss performed in the add(x) method came up heads. In other words, E[j] is equal to

the expected number of biased coin tosses required to obtain the first heads.2 Each coin

toss is independent and comes up heads with probability 1/w, so E[j] ≤ w. (See Lemma 4.2

for an analysis of this for the case w = 2.)

Similarly, the elements of t smaller than x are xi−1, . . . ,xi−k where all these k coin

tosses come up tails and the coin toss for xi−k−1 comes up heads. Therefore, E[k] ≤ w − 1,

since this is the same coin tossing experiment considered previously, but in which the last

toss doesn’t count. In summary, nx = j + k, so

E[nx] = E[j + k] = E[j] + E[k] ≤ 2w− 1 .

2This analysis ignores the fact that j never exceeds n− i + 1. However, this only decreases E[j], so the upper

bound still holds

247

13. Data Structures for Integers 13.4. Discussion and Exercises

xi = x xi+1 xi+2 xi+j−2 xi+j−1. . .

T T T T H

xi−1

T

xi−2

T

xi−k+1

T

xi−k

T

xi−k−1

H

. . .

.

︷ ︸︸ ︷
elements in treap, t, containing x

︸ ︷︷ ︸︸ ︷︷ ︸
k j

Figure 13.10: The number of elements in the treap, t, containing x is determined by two

coin tossing experiments.

Lemma 13.1 was the last piece in the proof of the following theorem, which sum-

marizes the performance of the YFastTrie:

Theorem 13.3. A YFastTrie implements the SSet interface for w-bit integers. A YFastTrie

supports the operations add(x), remove(x), and find(x) inO(logw) expected time per operation.

The space used by a YFastTrie that stores n values is O(n+ w).

The w term in the space requirement comes from the fact that xft always stores

the value 2w − 1. The implementation could be modified (at the expense of adding some

extra cases to the code) so that it is unnecessary to store this value. In this case, the space

requirement in the theorem becomes O(n).

13.4 Discussion and Exercises

The first data structure to provide O(logw) time add(x), remove(x), and find(x) operations

was proposed by van Emde Boas and has since become known as the van Emde Boas (or

stratified) tree [72]. The original van Emde Boas structure had size 2w, so was impractical

for large integers.

The XFastTrie and YFastTrie data structures were discovered by Willard [75].

The XFastTrie structure is very closely related to van Emde Boas trees. One view of this

is that the hash tables in an XFastTrie replace arrays in a van Emde Boas tree. That is,

instead of storing the hash table t[i], a van Emde Boas tree stores an array of length 2i.

Another structure for storing integers is Fredman and Willard’s fusion trees [30].

This structure can store n w-bit integers in O(n) space so that the find(x) operation runs in

O((logn)/(logw)) time. By using a fusion tree when logw >
√

logn and a YFastTrie when

logw ≤ √
logn one obtains an O(n) space data structure that can implement the find(x)

operation inO(
√

logn) time. Recent lower-bound results of Pǎtraşcu and Thorup [59] show

that these results are more-or-less optimal, at least for structures that use only O(n) space.

248

13. Data Structures for Integers 13.4. Discussion and Exercises

Exercise 13.1. Design and implement a simplified version of a BinaryTrie that doesn’t

have a linked list or jump pointers, but for which find(x) still runs in O(w) time.

Exercise 13.2. Design and implement a simplified implementation of an XFastTrie that

doesn’t use a binary trie at all. Instead, your implementation should store everything in a

doubly-linked list and w+ 1 hash tables.

Exercise 13.3. We can think of a BinaryTrie as a structure that stores bit strings of length

w in such a way that each bitstring is represented as a root to leaf path. Extend this idea

into an SSet implementation that stores variable-length strings and implements add(s),

remove(s), and find(s) in time proporitional to the length of s.

Hint: Each node in your data structure should store a hash table that is indexed by char-

acter values.

Exercise 13.4. For an integer x ∈ {0, . . .2w − 1}, let d(x) denote the difference between x

and the value returned by find(x) [if find(x) returns null, then define d(x) as 2w]. For

example, if find(23) returns 43, then d(23) = 20.

1. Design and implement a modified version of the find(x) operation in an XFastTrie

that runs in O(1 + logd(x)) expected time. Hint: The hash table t[w] contains all the

values, x, such that d(x) = 0, so that would be a good place to start.

2. Design and implement a modified version of the find(x) operation in an XFastTrie

that runs in O(1 + loglogd(x)) expected time.

249

13. Data Structures for Integers 13.4. Discussion and Exercises

250

Chapter 14

External Memory Searching

Throughout this book, we have been using the w-bit word-RAM model of computation de-

fined in Section 1.3. An implicit assumption of this model is that our computer has a large

enough random access memory to store all the data in the data structure. In some situa-

tions, this assumption is not valid. There exist collections of data so big that there is no

computer with a memory large enough to store all the data. In such cases, the application

must resort to storing the data on some external storage medium such as a hard disk, a

solid state disk, or even a network file server (which has its own external storage).

Accessing an item from the external storage is extremely slow. The hard disk at-

tached to the computer on which this book is being written has an average access time

of 19ms and the solid state drive attached to this computer has an average access time of

0.3ms. In contrast, the random access memory in this computer has an average access time

of less than 0.000113ms. It is more than 2 500 times faster to access RAM than the solid

state drive and more than 160 000 times faster to access RAM than the hard drive.

These speeds are fairly typical; accessing a random byte from RAM is thousands

of times faster than accessing a random byte from a hard disk or solid-state drive. Access

time, however, does not tell the whole story. When we access a byte from a hard disk

or solid state disk, an entire block of the disk is read. Each of the drives attached to this

computer has a block size of 4 096; each time we read one byte, the drive gives us a block

containing 4 096 bytes. If we organize our data structure carefully, this means that each

disk access could yield 4 096 bytes that are helpful in completing whatever operation we

are doing.

This is the idea behind the external memory model of computation, illustrated schemat-

ically in Figure 14.1. In this model, the computer has access to a large external memory

where all the data resides. This memory is divided into memory blocks each containing B

251

14. External Memory Searching 14.1. The Block Store

x

disk

RAM

External Memory

x

x

CPU

Figure 14.1: In the external memory model, accessing an individual item, x, in the external

memory requires reading the entire block containing x into RAM.

words. The computer also has a limited internal memory on which it can perform compu-

tations. Transferring a block between internal memory and external memory takes con-

stant time. Computations performed within the internal memory are free; they take no

time at all. The fact that internal memory computations are free may seem a bit strange,

but this is really just to emphasize the fact that external memory is so much slower than

RAM.

In the full-blown external memory model, the size of the internal memory is also

a parameter. However, for the data structures described in this chapter, it is sufficient to

have an internal memory of size O(B + logBn). That is, the memory needs to be capable

of storing a constant number of blocks and a recursion stack of height O(logBn). In most

cases, the O(B) term dominates the memory requirement. For example, even with the

relatively small value B = 32, B ≥ logBn for all n ≤ 2160. In decimal, B ≥ logBn for any

n ≤ 1461501637330902918203684832716283019655932542976.

14.1 The Block Store

The notion of external memory includes a large number of possible different devices, each

of which has their own block size and is accessed with their own collection of system calls.

To simplify the exposition of this chapter so that we can focus on the common ideas, we

encapsulate external memory devices with an object called a BlockStore. A BlockStore

stores a collection of memory blocks, each of size B. Each block is uniquely identified by

252

14. External Memory Searching 14.2. B-Trees

its integer index. A BlockStore supports these operations:

1. readBlock(i): Return the contents of the block whose index is i.

2. writeBlock(i,b): Write contents of b to the block whose index is i.

3. placeBlock(b): Return a new index and store the contents of b at this index.

4. freeBlock(i): Free the block whose index is i. This indicates that the contents of

this block are no longer used so the external memory allocated by this block may be

reused.

The easiest way to imagine a BlockStore is to think of it as storing a file on

disk that is partitioned into blocks, each containing B bytes. Then readBlock(i) and

writeBlock(i,b) simply read and write bytes iB, . . . , (i+ 1)B− 1 of this file. In addition, a

simple BlockStore could keep a free list of blocks that are available for use. Blocks freed

with freeBlock(i) are added to the free list. In this way, placeBlock(b) can use a block

from the free list or, if none is available, can append a new block to the end of the file.

14.2 B-Trees

In this section we discuss a generalization of binary trees, called B-trees, that is efficient in

the external memory model. Alternatively, B-trees can be viewed as the natural general-

ization of 2-4 trees described in Section 9.1. (A 2-4 tree is a special case of a B-tree that we

get by setting B = 2.)

For any integer B ≥ 2, a B-tree is a tree in which all leaves have the same depth and

every non-root internal node, u, has at least B children and at most 2B children. The chil-

dren of u are stored in an array, u.children. The requirement on the number of children

is relaxed at the root, which can have anywhere between 2 and 2B children.

If the height of a B-tree is h, then it follows that the number, `, of leaves in the

B-tree satisfies

2Bh−1 ≤ ` ≤ 2(2B)h−1 .

Taking the logarithm of the first inequality and rearranging terms yields:

h ≤ log` − 1
logB

+ 1

≤ log`
logB

+ 1

= logB ` + 1 .

253

14. External Memory Searching 14.2. B-Trees

0 1 2 4 5 7 8 9 11 12 13 15 16 18 19 20 22 23

3 6 14 17 21

10

Figure 14.2: A B-tree with B = 2.

That is, the height of a B-tree is proportional to the base-B logarithm of the number of

leaves.

Each node, u, in B-tree stores an array of keys u.keys[0], . . . ,u.keys[2B−1]. If u is an

internal node with k children, then the number of keys stored at u is exactly k−1 and these

are stored in u.keys[0], . . . ,u.keys[k − 2]. The remaining 2B − k + 1 array entries in u.keys

are set to null. If u is a non-root leaf node, then u contains between B− 1 and 2B− 1 keys.

The keys in a B-tree respect an ordering similar to the keys in a binary search tree. For any

node, u, that stores k − 1 keys,

u.keys[0] < u.keys[1] < · · · < u.keys[k − 2] .

If u is an internal node, then for every i ∈ {0, . . . , k − 2}, u.keys[i] is larger than every key

stored in the subtree rooted at u.children[i] but smaller than every key stored in the

subtree rooted at u.children[i+ 1]. Informally,

u.children[i] ≺ u.keys[i] ≺ u.children[i+ 1] .

An example of a B-tree with B = 2 is shown in Figure 14.2.

Note that all the data stored in a B-tree node has sizeO(B). Therefore, in an external

memory setting, the value of B in a B-tree is chosen so that a node fits into a single external

memory block. In this way, the time it takes to perform a B-tree operation in the external

memory model is proportional to the number of nodes that are accessed (read or written)

by the operation.

For example, if the keys are 4 byte integers and the node indices are also 4 bytes,

then setting B = 256 means that each node stores

(4 + 4)× 2B = 8× 512 = 4096

254

14. External Memory Searching 14.2. B-Trees

0 1 2 4 5 7 8 9 11 12 13 15 16 18 19 20 22 23

3 6 14 17 21

10

16.5

Figure 14.3: A successful search (for the value 4) and an unsuccessful search (for the value

16.5) in a B-tree. Shaded nodes show where the value of z is updated during the searches.

bytes of data. This would be a perfect value of B for the hard disk or solid state drive

discussed in the introduction to this chaper, which have a block size of 4096 bytes.

The BTree class, which implements a B-tree, stores a BlockStore, bs, that stores

BTree nodes as well as the index, ri, of the root node. As usual, an integer, n, is used to

keep track of the number of items in the data structure:
BTree

int n;
BlockStore<Node> bs;
int ri;

14.2.1 Searching

The implementation of the find(x) operation, which is illustrated in Figure 14.3, general-

izes the find(x) operation in a binary search tree. The search for x starts at the root and

uses the keys stored at a node, u, to determine in which of u’s children the search should

continue.

More specifically, at a node u, the search checks if x is stored in u.keys. If so, x has

been found and the search is complete. Otherwise, the search finds the smallest integer,

i, such that u.keys[i] > x and continues the search in the subtree rooted at u.children[i].

If no key in u.keys is greater than x, then the search continues in u’s rightmost child. Just

like binary search trees, the algorithm keeps track of the most recently seen key, z, that is

larger than x. In case x is not found, z is returned as the smallest value that is greater or

equal to x.
BTree

T find(T x) {
T z = null;
int ui = ri;

255

14. External Memory Searching 14.2. B-Trees

1

0

4

1

5

2

8

3

9

4

10

5

14

6

16

7

22

8

31

9

45

10

–

11

–

12

–

13

–

14

–

15

27

a

Figure 14.4: The execution of findIt(a,27).

while (ui >= 0) {
Node u = bs.readBlock(ui);
int i = findIt(u.keys, x);
if (i < 0) return u.keys[-(i+1)]; // found it
if (u.keys[i] != null)
z = u.keys[i];

ui = u.children[i];
}
return z;

}

Central to the find(x) method is the findIt(a,x) method that searches in a null-padded

sorted array, a, for the value x. This method, illustrated in Figure 14.4, works for any array,

a, where a[0], . . . ,a[k−1] are a sequence of keys in sorted order and a[k], . . . ,a[a.length−1]

are all set to null. If x is in the array at position i, then findIt(a,x) returns −i − 1.

Otherwise, it returns the smallest index, i, such that a[i] > x or a[i] = null.

BTree
int findIt(T[] a, T x) {
int lo = 0, hi = a.length;
while (hi != lo) {

int m = (hi+lo)/2;
int cmp = a[m] == null ? -1 : compare(x, a[m]);
if (cmp < 0)
hi = m; // look in first half

else if (cmp > 0)
lo = m+1; // look in second half

else
return -m-1; // found it

}
return lo;

}

256

14. External Memory Searching 14.2. B-Trees

The findIt(a,x) method does its job using a binary search that halves the search space at

each step, so it runs in O(log(a.length)) time. In this case a.length = 2B, so findIt(a,x)

runs in O(logB) time.

We can analyze the running time of a B-tree find(x) operation both in the usual

word-RAM model (where every instruction counts) and in the external memory model

(where we only count the number of nodes accessed). Since each leaf in a B-tree stores at

least one key and the height of a B-Tree with ` leaves is O(logB `), the height of a B-tree

that stores n keys is O(logBn). Therefore, in the external memory model, the time taken

by the find(x) operation is O(logBn). To determine the running time in the word-RAM

model, we have to account for the cost of calling findIt(a,x) for each node we access, so

the running time of find(x) in the word-RAM model is

O(logBn)×O(logB) =O(logn) .

14.2.2 Addition

One important difference between B-trees and the BinarySearchTree data structure from

Section 6.2 is that the nodes of a B-tree do not store pointers to their parents. The reason

for this will be explained shortly. The lack of parent pointers has the consequence that the

add(x) and remove(x) operations on B-trees are most easily implemented using recursion.

Like all balanced search trees, some form of rebalancing is sometimes required

during an add(x) operation. In a B-tree, this is done by splitting nodes. Refer to Figure 14.5

for what follows. Although splitting takes place across two levels of recursion, it is best

understood as an operation that takes a node u containing 2B keys and having 2B + 1

children. It creates a new node, w, that adopts u.children[B], . . . ,u.children[2B]. The new

node w also takes u’s B largest keys, u.keys[B], . . . ,u.keys[2B − 1]. At this point, u has B

children and B keys. The extra key, u.keys[B − 1], is passed up to the parent of u, which

also adopts w.

Notice that the splitting operation modifies 3 nodes: u, u’s parent, and the new

node, w. This is where it is important that the nodes of a B-tree do not maintain parent

pointers. If they did, then the B + 1 children adopted by w would all need to have their

parent pointers modified. This would increase the number of external memory access

from 3 to B+ 4 and would make B-trees much less efficient for large values of B.

The add(x) method in a B-tree is illustrated in Figure 14.6. At a high level, this

method finds a leaf, u, at which to add the value x. If this causes u to become overfull

(because it already contained B−1 keys), then u is split. If this causes u’s parent to become

257

14. External Memory Searching 14.2. B-Trees

h j m o q s

b d f u

A C E V
G I K N P R T

u
¢¢¢

u.split()

⇓

h j m o q s

b d f m

A C E V
G I K N P R T

u

u w
¢

Figure 14.5: Splitting the node u in a B-tree (B = 3). Notice that the key u.keys[2] = m

passes from u to its parent.

258

14. External Memory Searching 14.2. B-Trees

0 1 2 4 5 7 8 9 11 12 13 15 16 18 19 20 23 24

3 6 14 17 22

10

21

⇓

0 1 2 4 5 7 8 9 11 12 13 15 16 18 20 23 24

3 6 14 17 22

10

21

19

19

⇓

0 1 2 4 5 7 8 9 11 12 13 15 16 18 20 23 24

3 6 14

17

22

10

21

1917

Figure 14.6: The add(x) operation in a BTree. Adding the value 21 results in two nodes

being split.

overfull then u’s parent is also split, which may cause u’s grandparent to become overfull,

and so on. This process continues, moving up the tree one level at a time until reaching a

node that is not overfull or until the root is split. In the former case, the process stops. In

the latter case, a new root is created whose two children become the nodes obtained when

the original root was split.

In summary, the high-level view of the add(x) method is that it walks from the root

to a leaf searching for x, adds x to this leaf, and then walks back up to the root, splitting

any overfull nodes it encounters along the way. With this high level view in mind, we can

now delve into the details of how this method can be implemented recursively.

The real work of add(x) is done by the addRecursive(x,ui) method, which adds the

value x to the subtree whose root, u, has identifier ui. If u is a leaf, then x is just added into

u.keys. Otherwise, x is added recursively into the appropriate child, u′, of u. The result of

259

14. External Memory Searching 14.2. B-Trees

this recursive call is normally null but may also be a reference to a newly-created node,

w, that was created because u′ was split. In this case, u adopts w and takes its first key,

completing the splitting operation on u′.

After x has been added (either to u or to a descendant of u), the addRecursive(x,ui)

method checks to see if u is storing too many (more than 2B−1) keys. If so, then u needs to

be split with a call to the u.split() method. The result of calling u.split(), is a new node

that is used as the return value for addRecursive(x,ui).
BTree

Node addRecursive(T x, int ui) throws DuplicateValueException {
Node u = bs.readBlock(ui);
int i = findIt(u.keys, x);
if (i < 0) throw new DuplicateValueException();
if (u.children[i] < 0) { // leaf node, just add it

u.add(x, -1);
bs.writeBlock(u.id, u);

} else {
Node w = addRecursive(x, u.children[i]);
if (w != null) { // child was split, w is new child
x = w.remove(0);
bs.writeBlock(w.id, w);
u.add(x, w.id);
bs.writeBlock(u.id, u);

}
}
return u.isFull() ? u.split() : null;

}

The addRecursive(x,ui) method is just a helper for the add(x) method, which calls

addRecursive(x,ri) to insert x into the root of the B-tree. If addRecursive(x,ri) causes

the root to split, then a new root is created that takes as its children both the old root and

the new node created when the old root was split.
BTree

boolean add(T x) {
Node w;
try {

w = addRecursive(x, ri);
} catch (DuplicateValueException e) {

return false;
}
if (w != null) { // root was split, make new root

Node newroot = new Node();
x = w.remove(0);

260

14. External Memory Searching 14.2. B-Trees

bs.writeBlock(w.id, w);
newroot.children[0] = ri;
newroot.keys[0] = x;
newroot.children[1] = w.id;
ri = newroot.id;
bs.writeBlock(ri, newroot);

}
n++;
return true;

}

The add(x) method and its helper, addRecursive(x,ui), can be analyzed in two

phases:

Downward phase: During the downward phase of the recursion, before x has been added,

they access a sequence of nodes and call findIt(a,x) on each node. Like the find(x)

method, this takesO(logBn) time in the external memory model andO(logn) time in

the word-RAM model.

Upward phase: During the upward phase of the recursion, after x has been added, these

methods perform a sequence of at most O(logBn) splits. Each split involves only 3

nodes, so this phase takes O(logBn) time in the external memory model. However,

each split involves moving B keys and children from one node to another so, in the

word-RAM model, this takes O(B logn) time.

Recall that the value of B can be quite large, even much larger than logn. Therefore,

in the word-RAM model, adding a value to a B-tree can be much slower than adding into a

balanced binary search tree. Later, in Section 14.2.4, we will show that the situation is not

quite so bad; the amortized number of split operations done during an add(x) operation

is constant. This shows that the (amortized) running time of the add(x) operation in the

word-RAM model is O(B+ logn).

14.2.3 Removal

The remove(x) operation in a BTree is, again, most easily implemented as a recursive

method. Although the recursive implementation of remove(x) spreads the complexity

across several methods, the overall process, which is illustrated in Figure 14.7, is fairly

straightforward. By shuffling keys around, removal is reduced to the problem of remov-

ing a value, x′, from some leaf, u. Removing x′ may leave u with less than B− 1 keys; this

situation is called an underflow.

261

14. External Memory Searching 14.2. B-Trees

1 4 11 12 13 15 16 18 19 20 22 23

3 14 17 21

10

⇓

1 4 11 12 13 15 16 18 19 20 22 23

3 14 17 21

10

v w

merge(v,w)

⇓

1 11 12 13 15 16 18 19 20 22 233

14 17 21

10

w v

shiftLR(w,v)

⇓

11 12 13 15 16 18 19 20 22 23

17 21

14

10

1 3

Figure 14.7: Removing the value 4 from a B-tree results in one merge and one borrowing

operation.

262

14. External Memory Searching 14.2. B-Trees

0 1 2 4 5 7 8 9 11 12 13 15 16 18 19 20 22 23

3 6 14 17 21

10

⇓

0 1 2 4 5 7 8 9 12 13 15 16 18 19 20 22 23

3 6 14 17 21

11

Figure 14.8: The remove(x) operation in a BTree. To remove the value x = 10 we replace it

with the the value x′ = 11 and remove 11 from the leaf that contains it.

When an underflow occurs, u either borrows keys from one of its siblings or is

merged with one of its siblings. If u is merged with a sibling, then u’s parent will now

have one less child and one less key, which can cause u’s parent to underflow; this is again

corrected by borrowing or merging and merging may cause u’s grandparent to underflow.

This process works its way back up to the root until there is no more underflow or until

the root has its last two children merged into a single child. When the latter case occurs,

the root is removed and its lone child becomes the new root.

Next we delve into the details of how each of these steps is implemented. The first

job of the remove(x) method is to find the element x that should be removed. If x is found

in a leaf, then x is removed from this leaf. Otherwise, if x is found at u.keys[i] for some

internal node, u, then the algorithm removes the smallest value, x′, in the subtree rooted

at u.children[i+ 1]. The value x′ is the smallest value stored in the BTree that is greater

than x. The value of x′ is then used to replace x in u.keys[i]. This process is illustrated in

Figure 14.8.

The removeRecursive(x,ui) method is a recursive implementation of the preced-

ing algorithm:
BTree

boolean removeRecursive(T x, int ui) {

263

14. External Memory Searching 14.2. B-Trees

if (ui < 0) return false; // didn’t find it
Node u = bs.readBlock(ui);
int i = findIt(u.keys, x);
if (i < 0) { // found it

i = -(i+1);
if (u.isLeaf()) {
u.remove(i);

} else {
u.keys[i] = removeSmallest(u.children[i+1]);
checkUnderflow(u, i+1);

}
return true;

} else if (removeRecursive(x, u.children[i])) {
checkUnderflow(u, i);
return true;

}
return false;

}
T removeSmallest(int ui) {
Node u = bs.readBlock(ui);
if (u.isLeaf())

return u.remove(0);
T y = removeSmallest(u.children[0]);
checkUnderflow(u, 0);
return y;

}

Note that, after recursively removing x from the ith child of u, removeRecursive(x,ui)

needs to ensure that this child still has at least B − 1 keys. In the preceding code, this is

done with a call to a method called checkUnderflow(x,i), which checks for, and corrects,

an underflow in the ith child of u. Let w be the ith child of u. If w has only B−2 keys, then

this needs to be fixed. The fix requires using a sibling of w. This can be either child i+ 1 of

u or child i−1 of u. We will usually use child i−1 of u, which is the sibling, v, of w directly

to its left. The only time this doesn’t work is when i = 0, in which case we use the sibling

directly to w’s right.

BTree
void checkUnderflow(Node u, int i) {
if (u.children[i] < 0) return;
if (i == 0)

checkUnderflowZero(u, i); // use u’s right sibling
else

checkUnderflowNonZero(u,i);

264

14. External Memory Searching 14.2. B-Trees

h m q

b d f o

A C E T
G I K N P R

s

v w

u

j

¢

shiftRL(v,w)

⇓

h o q

b d f m

A C E T
G I K N P R

s

v wj

u

¢¢

Figure 14.9: If v has more than B− 1 keys, then w can borrow keys from v.

}

In the following, we focus on the case when i , 0 so that any underflow at the ith child of

u will be corrected with the help of the (i−1)st child of u. The case i = 0 is similar and the

details can be found in the accompanying source code.

To fix an underflow at node w, we need to find more keys (and possibly also chil-

dren), for w. There are two ways to do this:

Borrowing: If w has a sibling, v, with more than B− 1 keys, then w can borrow some keys

(and possibly also children) from v. More specifically, if v stores size(v) keys, then

between them, v and w have a total of

B− 2 + size(w) ≥ 2B− 2

keys. We can therefore shift keys from v to w so that each of v and w has at least B−1

keys. This process is illustrated in Figure 14.9.

Merging: If v has only B − 1 keys, we must do something more drastic, since v can not

265

14. External Memory Searching 14.2. B-Trees

h o

b d f m

A C E R
G I K N P

q

v wj

u

¢ ¢

merge(v,w)

⇓

h j m o

b d f q

A C E R
G I K N P

u

Figure 14.10: Merging two siblings v and w in a B-tree (B = 3).

afford to give any keys to w. Therefore, we merge v and w as shown in Figure 14.10.

The merge operation is the opposite of the split operation. It takes two nodes that

contain a total of 2B−3 keys and merges them into a single node that contains 2B−2

keys. (The additional key comes from the fact that, when we merge v and w, their

common parent, u, now has one less child and therefore needs to give up one of its

keys.)

BTree
void checkUnderflowNonZero(Node u, int i) {
Node w = bs.readBlock(u.children[i]); // w is child of u
if (w.size() < B-1) { // underflow at w

Node v = bs.readBlock(u.children[i-1]); // v is left sibling of w
if (v.size() > B) { // w can borrow from v
shiftLR(u, i-1, v, w);

} else { // v will absorb w
merge(u, i-1, v, w);

}
}

}
void checkUnderflowZero(Node u, int i) {

266

14. External Memory Searching 14.2. B-Trees

Node w = bs.readBlock(u.children[i]); // w is child of u
if (w.size() < B-1) { // underflow at w

Node v = bs.readBlock(u.children[i+1]); // v is right sibling of w
if (v.size() > B) { // w can borrow from v
shiftRL(u, i, v, w);

} else { // w will absorb w
merge(u, i, w, v);
u.children[i] = w.id;

}
}

}

To summarize, the remove(x) method in a B-tree follows a root to leaf path, removes

a key x′ from a leaf, u, and then performs zero or more merge operations involving u and its

ancestors, and performs at most one borrowing operation. Since each merge and borrow

operation involves modifying only 3 nodes, and only O(logBn) of these operations occur,

the entire process takes O(logBn) time in the external memory model. Again, however,

each merge and borrow operation takes O(B) time in the word-RAM model, so (for now)

the most we can say about the running time required by remove(x) in the word-RAM model

is that it is O(B logBn).

14.2.4 Amortized Analysis of B-Trees

Thus far, we have shown that

1. In the external memory model, the running time of find(x), add(x), and remove(x)

in a B-tree is O(logBn).

2. In the word-RAM model, the running time of find(x) is O(logn) and the running

time of add(x) and remove(x) is O(B logn).

The following lemma shows that, so far, we have overestimated the number of

merge and split operations performed by B-trees.

Lemma 14.1. Starting with an empty B-tree and performing any sequence of m add(x) and

remove(x) operations results in at most 3m/2 splits, merges, and borrows being performed.

Proof. The proof of this has already been sketched in Section 9.3 for the special case in

which B = 2. The lemma can be proven using a credit scheme, in which

1. each split, merge, or borrow operation is paid for with two credits, i.e., a credit is

removed each time one of these operations occurs; and

267

14. External Memory Searching 14.2. B-Trees

2. at most 3 credits are created during any add(x) or remove(x) operation.

Since at most 3m credits are ever created and each split, merge, and borrow is paid for with

with 2 credits, it follows that at most 3m/2 splits, merges, and borrows are performed.

These credits are illustrated using the ¢ symbol in Figures 14.5, 14.9, and 14.10.

To keep track of these credits the proof maintains the following credit invariant:

Any non-root node with B − 1 keys stores 1 credit and any node with 2B − 1 keys stores 3

credits. A node that stores at least B keys and most 2B− 2 keys need not store any credits.

What remains is to show that we can maintain the credit invariant and satisfy properties

1 and 2, above, during each add(x) and remove(x) operation.

Adding: The add(x) method does not perform any merges or borrows, so we need only

consider split operations that occur as a result of calls to add(x).

Each split operation occurs because a key is added to a node, u, that already con-

tains 2B− 1 keys. When this happens, u is split into two nodes, u′ and u′′ having B− 1 and

B keys, respectively. Prior to this operation, u was storing 2B−1 keys, and hence 3 credits.

Two of these credits can be used to pay for the split and the other credit can be given to u′

(which has B−1 keys) to maintain the credit invariant. Therefore, we can pay for the split

and maintain the credit invariant during any split.

The only other modification to nodes that occur during an add(x) operation happen

after all splits, if any, are complete. This modification involves adding a new key to some

node u′. If, prior to this, u′ had 2B− 2 children, then it now has 2B− 1 children and must

therefore receive 3 credits. These are the only credits given out by the add(x) method.

Removing: During a call to remove(x), zero or more merges occur and are possibly fol-

lowed by a single borrow. Each merge occurs because two nodes, v and w, that each had

exactly B−1 keys prior to calling remove(x) were merged into a single node that has exactly

2B − 2 keys. Each such merge therefore frees up 2 credits that can be used to pay for the

merge.

After any merges are performed, at most one borrow operation occurs, after which

no further merges or borrows occur. This borrow operation occurs when we remove a key

from a node, v, that has B−1 keys. The node v therefore has one credit and this credit goes

towards the cost of the borrow. This single credit is not enough to pay for the borrow, so

we create one credit to complete the payment.

At this point, we have created one credit and we still to show that the credit in-

variant can be maintained. In the worst case, v’s sibling, w, has exactly B keys before the

268

14. External Memory Searching 14.3. Discussion and Exercises

borrow so that, afterwards, both v and w have B − 1 keys. This means that v and w each

need to be storing a credit when the operation is complete. Therefore, in this case, we

create an addition 2 credits to give to v and w. Since a borrow happens at most once during

a remove(x) operation, this means that we create at most 3 credits, as required.

If the remove(x) operation does not include a borrow operation this is because it

finishes by removing a key from some node that, prior to the operation, had B or more

keys. In the worst case, this node had exactly B keys, so that it now has B − 1 keys and

must be given 1 credit, which we create.

In either case—whether the removal finishes with a borrow operation or not—at

most 3 credits need to be created during a call to remove(x) to maintain the credit invariant

and pay for all borrows and merges that occur. This completes the proof of the lemma.

The purpose of Lemma 14.1 is to show that, in the word-RAM model the cost of

splits, merges and joins during a sequence of m add(x) and remove(x) operations is only

O(Bm). That is, the amortized cost per operation is onlyO(B), so that the amortized cost of

add(x) and remove(x) in the word-RAM model is O(B+ logn). This is summarized by the

following pair of theorems:

Theorem 14.1 (External Memory B-Trees). A BTree implements the SSet interface. In the

external memory model, a BTree supports the operations add(x), remove(x), and find(x) in

O(logBn) time per operation.

Theorem 14.2 (Word-RAM B-Trees). A BTree implements the SSet interface. In the word-

RAM model, and ignoring the cost of splits, merges, and borrows, a BTree supports the opera-

tions add(x), remove(x), and find(x) in O(logn) time per operation. Furthermore, beginning

with an empty BTree, any sequence of m add(x) and remove(x) operations results in a total of

O(Bm) time spent performing splits, merges, and borrows.

14.3 Discussion and Exercises

The external memory model of computation was introduced by Aggarwal and Vitter [4].

It is sometimes also called the I/O model or the disk access model.

B-Trees are to external memory searching what binary search trees are to internal

memory searching. B-trees were introduced by Bayer and McCreight [9] in 1970 and,

less than ten years later, they were referred to as ubiquitous in the title of Comer’s ACM

Computing Surveys article [15].

269

14. External Memory Searching 14.3. Discussion and Exercises

Like binary search trees, there are many variants of B-Trees including B+-trees, B∗-
trees, and counted B-trees. B-trees are indeed ubiquitous and are the primary data struc-

ture in many file systems, including Apple’s HFS+, Microsoft’s NTFS, and Linux’s Ext4;

every major database system; and key-value stores used in cloud computing. Graefe’s re-

cent survey [36] provides a 200+ page overview of the many modern applications, variants,

and optimizations of B-trees.

B-trees implement the SSet interface. If only the USet interface is needed, then

external memory hashing could be used as an alternative to B-trees. External memory

hashing schemes do exist; see, for example, Reference [43]. These schemes implement

the USet operations in O(1) expected time in the external memory model. However, for a

variety of reasons, many applications still use B-trees even though they only require USet

operations.

One reason B-trees are such a popular choice is that they often perform better than

their O(logBn) running time bounds suggest. The reason for this is that, in external mem-

ory settings, the value of B is typically quite large—in the hundreds or even thousands.

This means that 99% or even 99.9% of the data in a B-tree is stored in the leaves. In a

database system with a large memory, it may be possible to cache all the internal nodes

of a B-tree in RAM, since they only represent 1% or 0.1% of the total data set. When this

happens, this means that a search in a B-tree involves a very fast search in RAM, through

the internal nodes, followed by a single external memory access to retrieve a leaf.

Exercise 14.1. Show what happens when the keys 1.5 and then 7.5 are added to the B-tree

in Figure 14.2.

Exercise 14.2. Show what happens when the keys 3 and then 4 are removed from the

B-tree in Figure 14.2.

Exercise 14.3. What is the maximum number of internal nodes in a B-tree that stores n

keys (as a function of n and B)?

Exercise 14.4. The introduction to this chapter claims that B-trees only need an internal

memory of size O(B + logBn). However, the implementation given here actually requires

more memory.

1. Show that the implementation of the add(x) and remove(x) methods given in this

chapter use an internal memory proportional to B logBn.

2. Describe how these methods could be modified to reduce their memory consumption

to O(B+ logBn).

270

14. External Memory Searching 14.3. Discussion and Exercises

Exercise 14.5. Draw the credits used in the proof of Lemma 14.1 on the trees in Fig-

ures 14.6 and 14.7. Verify that (with 3 additional credits) it is possible to pay for the splits,

merges, and borrows and maintain the credit invariant.

Exercise 14.6. Design a modified version of a B-tree in which nodes can have anywhere

from B up to 3B children (and hence B−1 up to 3B−1 keys). Show that this new version of

B-trees performs only O(m/B) splits, merges, and borrows during a sequence of m opera-

tions. (Hint: For this to work, you will have to be more agressive with merging, sometimes

merging two nodes before it is strictly necessary.)

Exercise 14.7. In this exercise, you will design a modified method of splitting and merg-

ing in B-trees that asymptotically reduces the number of splits, borrows and merges by

considering up to 3 nodes at a time.

1. Let u be an overfull node and let v be a sibling immediately to the right of u. There

are two ways to fix the overflow at u:

(a) u can give some of its keys to v; or

(b) u can be split and the keys of u and v can be evenly distributed among u, v, and

the newly created node, w.

Show that this can always be done in such a way that, after the operation, each of the

(at most 3) affected nodes has at least B+αB keys and at most 2B−αB keys, for some

constant α > 0.

2. Let u be an underfull node and let v and w be siblings of u There are two ways to fix

the underflow at u:

(a) keys can be redistributed among u, v, and w; or

(b) u, v, and w can be merged into two nodes and the keys of u, v, and w can be

redistributed amongst these nodes.

Show that this can always be done in such a way that, after the operation, each of the

(at most 3) affected nodes has at least B+αB keys and at most 2B−αB keys, for some

constant α > 0.

3. Show that, with these modifications, the number of merges, borrows, and splits that

occur during m operations is O(m/B).

271

14. External Memory Searching 14.3. Discussion and Exercises

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 16 17

2 4 10 12 14

7

B-tree

Figure 14.11: A B+-tree is a B-tree on top of a doubly-linked list of blocks.

Exercise 14.8. A B+-tree, illustrated in Figure 14.11 stores every key in a leaf and keeps

its leaves stored as a doubly-linked list. As usual, each leaf stores between B−1 and 2B−1

keys. Above this list is a standard B-tree that stores the largest value from each leaf but

the last.

1. Explain how to efficiently implement add(x), remove(x), and find(x) in a B+-tree.

2. Explain how to efficiently implement the findRange(x,y) method, that reports all

values greater than x and less than or equal to y, in a B+-tree.

3. Implement a class, BPlusTree, that implements find(x), add(x), remove(x), and findRange(x,y).

4. B+-trees duplicate some of the keys because they are stored both in the B-tree and in

the list. Explain why this duplication does not add up to much for large values of B.

272

Bibliography

[1] Free eBooks by Project Gutenberg. Available from: http://www.gutenberg.org/

[cited 2011-10-12].

[2] IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor Stan-

dards Committee of the IEEE Computer Society, 3 Park Avenue, New York, NY 10016-

5997, USA, August 2008. doi:10.1109/IEEESTD.2008.4610935.

[3] G.M. Adelson-Velskii and E.M. Landis. An algorithm for the organization of informa-

tion. Soviet Mathematics Doklady, 3(1259-1262):4, 1962.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[5] A. Andersson. Improving partial rebuilding by using simple balance criteria. In

F. K. H. A. Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and Data Structures,

Workshop WADS ’89, Ottawa, Canada, August 17–19, 1989, Proceedings, volume 382

of Lecture Notes in Computer Science, pages 393–402. Springer, 1989.

[6] A. Andersson. Balanced search trees made simple. In F. K. H. A. Dehne, J.-R. Sack,

N. Santoro, and S. Whitesides, editors, Algorithms and Data Structures, Third Work-

shop, WADS ’93, Montréal, Canada, August 11–13, 1993, Proceedings, volume 709 of

Lecture Notes in Computer Science, pages 60–71. Springer, 1993.

[7] A. Andersson. General balanced trees. Journal of Algorithms, 30(1):1–18, 1999.

[8] A. Bagchi, A. L. Buchsbaum, and M. T. Goodrich. Biased skip lists. In P. Bose and

P. Morin, editors, Algorithms and Computation, 13th International Symposium, ISAAC

2002 Vancouver, BC, Canada, November 21–23, 2002, Proceedings, volume 2518 of Lec-

ture Notes in Computer Science, pages 1–13. Springer, 2002.

[9] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered in-

dexes. In SIGFIDET Workshop, pages 107–141. ACM, 1970.

273

http://www.gutenberg.org/
http://dx.doi.org/10.1109/IEEESTD.2008.4610935

Bibliography Bibliography

[10] Bibliography on hashing. Available from: http://liinwww.ira.uka.de/

bibliography/Theory/hash.html [cited 2011-07-20].

[11] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure

message authentication. In M. J. Wiener, editor, Advances in Cryptology - CRYPTO

’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA,

August 15–19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,

pages 79–79. Springer, 1999.

[12] P. Bose, K. Douı̈eb, and S. Langerman. Dynamic optimality for skip lists and b-trees.

In S.-H. Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20–22, 2008,

pages 1106–1114. SIAM, 2008.

[13] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. Resizable

arrays in optimal time and space. In Dehne et al. [18], pages 37–48.

[14] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal of computer

and system sciences, 18(2):143–154, 1979.

[15] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

[16] C.A. Crane. Linear lists and priority queues as balanced binary trees. Technical

Report STAN-CS-72-259, Computer Science Department, Stanford University, 1972.

[17] S.A. Crosby and D.S. Wallach. Denial of service via algorithmic complexity attacks.

In Proceedings of the 12th USENIX Security Symposium, pages 29–44, 2003.

[18] F. K. H. A. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors. Algorithms and

Data Structures, 6th International Workshop, WADS ’99, Vancouver, British Columbia,

Canada, August 11–14, 1999, Proceedings, volume 1663 of Lecture Notes in Computer

Science. Springer, 1999.

[19] L. Devroye. Applications of the theory of records in the study of random trees. Acta

Informatica, 26(1):123–130, 1988.

[20] P. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In J. R. Gilbert

and R. G. Karlsson, editors, SWAT 90, 2nd Scandinavian Workshop on Algorithm The-

ory, Bergen, Norway, July 11–14, 1990, Proceedings, volume 447 of Lecture Notes in

Computer Science, pages 173–180. Springer, 1990.

274

http://liinwww.ira.uka.de/bibliography/Theory/hash.html
http://liinwww.ira.uka.de/bibliography/Theory/hash.html

Bibliography Bibliography

[21] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via

integer arithmetic without primes. In C. Puech and R. Reischuk, editors, STACS 96,

13th Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France,

February 22–24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science,

pages 567–580. Springer, 1996.

[22] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are

reliable. In W. Kuich, editor, Automata, Languages and Programming, 19th Interna-

tional Colloquium, ICALP92, Vienna, Austria, July 13–17, 1992, Proceedings, volume

623 of Lecture Notes in Computer Science, pages 235–246. Springer, 1992.

[23] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable random-

ized algorithm for the closest-pair problem. Journal of Algorithms, 25(1):19–51, 1997.

[24] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and

R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on

Computing, 23(4):738–761, 1994.

[25] A. Elmasry. Pairing heaps with O(loglogn) decrease cost. In Proceedings of the twenti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 471–476. Society for

Industrial and Applied Mathematics, 2009.

[26] F. Ergun, S. C. Sahinalp, J. Sharp, and R. Sinha. Biased dictionaries with fast in-

sert/deletes. In Proceedings of the thirty-third annual ACM symposium on Theory of

computing, pages 483–491, New York, NY, USA, 2001. ACM.

[27] M. Eytzinger. Thesaurus principum hac aetate in Europa viventium (Cologne). 1590.

In commentaries, ‘Eytzinger’ may appear in variant forms, including: Aitsingeri,

Aitsingero, Aitsingerum, Eyzingern.

[28] R. W. Floyd. Algorithm 245: Treesort 3. Communications of the ACM, 7(12):701, 1964.

[29] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0 (1) worst

case access time. Journal of the ACM, 31(3):538–544, 1984.

[30] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with

fusion trees. Journal of computer and system sciences, 47(3):424–436, 1993.

[31] M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E. Tarjan. The pairing heap: A new

form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

275

Bibliography Bibliography

[32] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[33] I. Galperin and R.L. Rivest. Scapegoat trees. In Proceedings of the fourth annual ACM-

SIAM Symposium on Discrete algorithms, pages 165–174. Society for Industrial and

Applied Mathematics, 1993.

[34] A. Gambin and A. Malinowski. Randomized meldable priority queues. In SOF-

SEM98: Theory and Practice of Informatics, pages 344–349. Springer, 1998.

[35] M. T. Goodrich and J. G. Kloss. Tiered vectors: Efficient dynamic arrays for rank-

based sequences. In Dehne et al. [18], pages 205–216.

[36] Goetz Graefe. Modern b-tree techniques. Foundations and Trends in Databases,

3(4):203–402, 2010.

[37] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,

2nd edition, 1994.

[38] L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In 19th

Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, 16–18

October 1978, Proceedings, pages 8–21. IEEE Computer Society, 1978.

[39] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM, 4(7):321, 1961.

[40] J. E. Hopcroft and R. E. Tarjan. Algorithm 447: Efficient algorithms for graph manip-

ulation. Communications of the ACM, 16(6):372–378, 1973.

[41] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,

21(4):549–568, 1974.

[42] HP-UX process management white paper, version 1.3, 1997. Available

from: http://h21007.www2.hp.com/portal/download/files/prot/files/STK/

pdfs/proc_mgt.pdf [cited 2011-07-20].

[43] M. S. Jensen and R. Pagh. Optimality in external memory hashing. Algorithmica,

52(3):403–411, 2008.

[44] P. Kirschenhofer, C. Martinez, and H. Prodinger. Analysis of an optimized search

algorithm for skip lists. Theoretical Computer Science, 144:199–220, 1995.

276

http://h21007.www2.hp.com/portal/download/files/prot/files/STK/pdfs/proc_mgt.pdf
http://h21007.www2.hp.com/portal/download/files/prot/files/STK/pdfs/proc_mgt.pdf

Bibliography Bibliography

[45] P. Kirschenhofer and H. Prodinger. The path length of random skip lists. Acta Infor-

matica, 31:775–792, 1994.

[46] D. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.

Addison-Wesley, third edition, 1997.

[47] D. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.

Addison-Wesley, third edition, 1997.

[48] D. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.

Addison-Wesley, second edition, 1997.

[49] C. Y. Lee. An algorithm for path connection and its applications. IRE Transaction on

Electronic Computers, EC-10(3):346–365, 1961.

[50] E. Lehman, F. T. Leighton, and A. R. Meyer. Mathematics for Computer Science.

2011. Available from: http://courses.csail.mit.edu/6.042/spring12/mcsfull.

pdf [cited 2012-03-22].

[51] C. Martı́nez and S. Roura. Randomized binary search trees. Journal of the ACM,

45(2):288–323, 1998.

[52] E. F. Moore. The shortest path through a maze. In Proceedings of the International

Symposium on the Theory of Switching, pages 285–292, 1959.

[53] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic skip lists. In Proceedings of

the third annual ACM-SIAM symposium on Discrete algorithms (SODA’92), pages 367–

375, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[54] Oracle. The Collections Framework. Available from: http://download.oracle.com/

javase/1.5.0/docs/guide/collections/ [cited 2011-07-19].

[55] Oracle. Java Platform Standard Ed. 6. Available from: http://download.oracle.

com/javase/6/docs/api/ [cited 2011-07-19].

[56] Oracle. The Java Tutorials. Available from: http://download.oracle.com/javase/

tutorial/ [cited 2011-07-19].

[57] R. Pagh and F.F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[58] T. Papadakis, J. I. Munro, and P. V. Poblete. Average search and update costs in skip

lists. BIT, 32:316–332, 1992.

277

http://courses.csail.mit.edu/6.042/spring12/mcsfull.pdf
http://courses.csail.mit.edu/6.042/spring12/mcsfull.pdf
http://download.oracle.com/javase/1.5.0/docs/guide/collections/
http://download.oracle.com/javase/1.5.0/docs/guide/collections/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/tutorial/
http://download.oracle.com/javase/tutorial/

Bibliography Bibliography

[59] M. Pǎtraşcu and M. Thorup. Randomization does not help searching predecessors. In

N. Bansal, K. Pruhs, and C. Stein, editors, Proceedings of the Eighteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,

January 7–9, 2007, pages 555–564. SIAM, 2007.

[60] W. Pugh. A skip list cookbook. Technical report, Institute for Advanced Computer

Studies, Department of Computer Science, University of Maryland, College Park,

1989. Available from: ftp://ftp.cs.umd.edu/pub/skipLists/cookbook.pdf [cited

2011-07-20].

[61] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of

the ACM, 33(6):668–676, 1990.

[62] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing, 2010. arXiv:

1011.5200.

[63] Redis. Available from: http://redis.io/ [cited 2011-07-20].

[64] B. Reed. The height of a random binary search tree. Journal of the ACM, 50(3):306–

332, 2003.

[65] S. M. Ross. Probability Models for Computer Science. Academic Press, Inc., Orlando,

FL, USA, 2001.

[66] R. Sedgewick. Left-leaning red-black trees, September 2008. Available from: http:

//www.cs.princeton.edu/˜rs/talks/LLRB/LLRB.pdf [cited 2011-07-21].

[67] R. Seidel and C.R. Aragon. Randomized search trees. Algorithmica, 16(4):464–497,

1996.

[68] H. H. Seward. Information sorting in the application of electronic digital computers

to business operations. Master’s thesis, Massachusetts Institute of Technology, Digital

Computer Laboratory, 1954.

[69] SkipDB. Available from: http://dekorte.com/projects/opensource/SkipDB/

[cited 2011-07-20].

[70] D.D. Sleator and R.E. Tarjan. Self-adjusting binary trees. In Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, 25–27 April, 1983, Boston, Mas-

sachusetts, USA, pages 235–245. ACM, ACM, 1983.

278

ftp://ftp.cs.umd.edu/pub/skipLists/cookbook.pdf
http://arxiv.org/abs/1011.5200
http://arxiv.org/abs/1011.5200
http://redis.io/
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
http://dekorte.com/projects/opensource/SkipDB/

Bibliography Bibliography

[71] S. P. Thompson. Calculus Made Easy. MacMillan, Toronto, 1914. Project Gutenberg

EBook 33283. Available from: http://www.gutenberg.org/ebooks/33283 [cited

2012-06-14].

[72] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and

linear space. Information Processing Letters, 6(3):80–82, 1977.

[73] J. Vuillemin. A data structure for manipulating priority queues. Communications of

the ACM, 21(4):309–315, 1978.

[74] J. Vuillemin. A unifying look at data structures. Communications of the ACM,

23(4):229–239, 1980.

[75] D. E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n).

Information Processing Letters, 17(2):81–84, 1983.

[76] J.W.J. Williams. Algorithm 232: Heapsort. Communications of the ACM, 7(6):347–348,

1964.

279

http://www.gutenberg.org/ebooks/33283

	Introduction
	The Need for Efficiency
	Interfaces
	The Queue, Stack, and Deque Interfaces
	The List Interface: Linear Sequences
	The USet Interface: Unordered Sets
	The SSet Interface: Sorted Sets

	Mathematical Background
	Exponentials and Logarithms
	Factorials
	Asymptotic Notation
	Randomization and Probability

	The Model of Computation
	Correctness, Time Complexity, and Space Complexity
	Code Samples
	List of Data Structures
	Discussion and Exercises

	Array-Based Lists
	ArrayStack: Fast Stack Operations Using an Array
	The Basics
	Growing and Shrinking
	Summary

	FastArrayStack: An Optimized ArrayStack
	ArrayQueue: An Array-Based Queue
	Summary

	ArrayDeque: Fast Deque Operations Using an Array
	Summary

	DualArrayDeque: Building a Deque from Two Stacks
	Balancing
	Summary

	RootishArrayStack: A Space-Efficient Array Stack
	Analysis of Growing and Shrinking
	Space Usage
	Summary
	Computing Square Roots

	Discussion and Exercises

	Linked Lists
	SLList: A Singly-Linked List
	Queue Operations
	Summary

	DLList: A Doubly-Linked List
	Adding and Removing
	Summary

	SEList: A Space-Efficient Linked List
	Space Requirements
	Finding Elements
	Adding an Element
	Removing an Element
	Amortized Analysis of Spreading and Gathering
	Summary

	Discussion and Exercises

	Skiplists
	The Basic Structure
	SkiplistSSet: An Efficient SSet Implementation
	Summary

	SkiplistList: An Efficient Random-Access List Implementation
	Summary

	Analysis of Skiplists
	Discussion and Exercises

	Hash Tables
	ChainedHashTable: Hashing with Chaining
	Multiplicative Hashing
	Summary

	LinearHashTable: Linear Probing
	Analysis of Linear Probing
	Summary
	Tabulation Hashing

	Hash Codes
	Hash Codes for Primitive Data Types
	Hash Codes for Compound Objects
	Hash Codes for Arrays and Strings

	Discussion and Exercises

	Binary Trees
	BinaryTree: A Basic Binary Tree
	Recursive Algorithms
	Traversing Binary Trees

	BinarySearchTree: An Unbalanced Binary Search Tree
	Searching
	Addition
	Removal
	Summary

	Discussion and Exercises

	Random Binary Search Trees
	Random Binary Search Trees
	Proof of Lemma 7.1
	Summary

	Treap: A Randomized Binary Search Tree
	Summary

	Discussion and Exercises

	Scapegoat Trees
	ScapegoatTree: A Binary Search Tree with Partial Rebuilding
	Analysis of Correctness and Running-Time
	Summary

	Discussion and Exercises

	Red-Black Trees
	2-4 Trees
	Adding a Leaf
	Removing a Leaf

	RedBlackTree: A Simulated 2-4 Tree
	Red-Black Trees and 2-4 Trees
	Left-Leaning Red-Black Trees
	Addition
	Removal

	Summary
	Discussion and Exercises

	Heaps
	BinaryHeap: An Implicit Binary Tree
	Summary

	MeldableHeap: A Randomized Meldable Heap
	Analysis of merge(varh1,varh2)
	Summary

	Discussion and Exercises

	Sorting Algorithms
	Comparison-Based Sorting
	Merge-Sort
	Quicksort
	Heap-sort
	A Lower-Bound for Comparison-Based Sorting

	Counting Sort and Radix Sort
	Counting Sort
	Radix-Sort

	Discussion and Exercises

	Graphs
	AdjacencyMatrix: Representing a Graph by a Matrix
	AdjacencyLists: A Graph as a Collection of Lists
	Graph Traversal
	Breadth-First Search
	Depth-First Search

	Discussion and Exercises

	Data Structures for Integers
	BinaryTrie: A digital search tree
	XFastTrie: Searching in Doubly-Logarithmic Time
	YFastTrie: A Doubly-Logarithmic Time SSet
	Discussion and Exercises

	External Memory Searching
	The Block Store
	B-Trees
	Searching
	Addition
	Removal
	Amortized Analysis of B-Trees

	Discussion and Exercises

