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Why This Book?

There are plenty of books that teach introductory data structures. Some of them are very
good. Most of them cost money, and the vast majority of computer science undergraduate

students will shell-out at least some cash on a data structures book.

There are a few free data structures books available online. Some are very good,
but most of them are getting old. The majority of these books became free when the
author and/or publisher decided to stop updating them. Updating these books is usually
not possible, for two reasons: (1) The copyright belongs to the author or publisher, who
may not allow it. (2) The source code for these books is often not available. That is, the
Word, WordPerfect, FrameMaker, or IXTEX source for the book is not available, and the

version of the software that handles this source may not even be available.

The goal of this project is to forever free undergraduate computer science students
from having to pay for an introductory data structures book. I have decided to implement
this goal by treating this book like an Open Source software project. The ITEX source,
Java source, and build scripts for the book are available for download on the book’s website
(opendatastructures.org) and also — more importantly — on a reliable source code
management site (https://github.com/patmorin/ods).

This source code is released under a Creative Commons Attribution license, meaning

that anyone is free

e to Share — to copy, distribute and transmit the work; and

e to Remix — to adapt the work.

This includes the right to make commercial use of the work. The only condition on these

rights is

e Attribution — You must attribute the work by displaying a notice stating the derived
work contains code and /or text from the Open Data Structures Project and/or linking

to opendatastructures.org.
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opendatastructures.org
https://github.com/patmorin/ods
opendatastructures.org

Anyone can contribute corrections/fixes using the git source-code management sys-
tem. Anyone can fork from the current version of the book and develop their own version
(for example, in another programming language). They can then ask that their changes
be merged back into my version. My hope is that, by doing things this way, this book
will continue to be a useful textbook long after my interest in the project (or my pulse,

whichever comes first) has waned.

v



Contents

1 Introduction

1.1 Imterfaces . . . . . . . . . .. ... ...
1.1.1  The Queue, Stack, and Deque Interfaces . . .
1.1.2  The List Interface: Linear Sequences . . . .
1.1.3 The USet Interface: Unordered Sets . . . . .
1.1.4 The SSet Interface: Sorted Sets. . . . . . ..

1.2 Mathematical Background . . . . . . ... ... ...
1.2.1 Logarithms . . .. ... ... ... ... ...
1.2.2 Factorials . . . . ... ... ... ...
1.2.3  Asymptotic Notation . . . . . ... ... ...
1.2.4 Randomization and Probability . . . . . . ..

1.3 The Model of Computation . . . ... ... ... ..

1.4 CodeSamples . . . . . .. .. ... ...

1.5 List of Data Structures . . . . . . . .. .. ... ...

1.6 References . . . . . . . . ... ... .

2 Array-Based Lists

2.1 ArrayStack: Fast Stack Operations Using an Array

2.1.1 TheBasics . . ... ... ... ... .....
2.1.2  Growing and Shrinking . . . .. .. ... ..
2.1.3 Summary . .. ...
2.2 FastArrayStack: An Optimized ArrayStack. . . . .
2.3 ArrayQueue: An Array-Based Queue . . . . .. . ..
2.3.1 Summary . ... ...

co O O Ot Ot = W NN

10



Contents Contents

2.4 ArrayDeque: Fast Deque Operations Using an Array . . . . .. . ... ... 25
241 Summary ... oo e e e 27

2.5 DualArrayDeque: Building a Deque from Two Stacks. . . . ... ... ... 27
2.5.1 Balancing . . . .. .. e 30
2.5.2  Summary ... ... e e e e e 32

2.6 RootishArrayStack: A Space-Efficient Array Stack . ... ... ... ... 32
2.6.1 Analysis of Growing and Shrinking . . . . . .. ... ... ... ... 36
2.6.2 Space Usage. . . . . . . . . e 37
2.6.3  Summary . . ... e e e e e 38
2.6.4 Computing Square Roots . . . . . . . ... ... ... ... ..... 38

2.7 Discussion and Exercises . . . . . . . ... o 0o 41
3 Linked Lists 43
3.1 SLList: A Singly-Linked List . . . . ... ... ... . .. 43
3.1.1 Queue Operations . . . . . . . . .. .. .. 45
3.1.2  Summary ... oL e e e e 46

3.2 DLList: A Doubly-Linked List . . . . . ... ... ... ... ........ 46
3.2.1 Adding and Removing . . . . . . . ... Lo oL 48
3.2.2  Summary .. ... oL e e 49

3.3 SEList: A Space-Efficient Linked List . . . . . .. ... ... ... ..... 50
3.3.1 Space Requirements . . . . . . . .. ... oo 51
3.3.2 Finding Elements . . . . . . .. . ... o 51
3.3.3 Adding an Element . . . . . . .. ... L oo 53
3.3.4 Removing an Element . . . . .. ... ... ... .. L. 55
3.3.5  Amortized Analysis of Spreading and Gathering . . ... ... ... 57
3.3.6  Summary . .o ... e e e e e 58

3.4 Discussion and Exercises . . . . . . . ... o oL 59
4 Skiplists 61
4.1 The Basic Structure . . . . . . . ..o 61
4.2 SkiplistSSet: An Efficient SSet Implementation . . ... ... ... ... 63
4.2.1  SUMMATY . .« v v v v e e e e e e e e e e e 66

vi



Contents Contents

4.3 SkiplistList: An Efficient Random-Access List Implementation . . . . . 66
4.3.1  SUmMmMAary . . . . ... oo e e e e e 71

4.4 Analysis of Skiplists . . . . . . ..o 71
4.5 Discussion and Exercises . . . . . . .. ... oo 74

5 Hash Tables 77
5.1 ChainedHashTable: Hashing with Chaining . . . . . . ... ... ... ... 7
5.1.1 Multiplicative Hashing . . . . . . . .. .. ... ... ... ... 79

5.1.2  Summary . . ... e e e 83

5.2 LinearHashTable: Linear Probing . . . . . . ... ... ... ... ... 83
5.2.1 Analysis of Linear Probing . . . . ... ... ... .. ... ..... 86

5.2.2  Summary . . ... e e e e e 88

5.2.3 Tabulation Hashing . . . . ... ... ... ... ... ... ... 89

5.3 Hash Codes . . . . . . . . . e 90
5.3.1 Hash Codes for Primitive Data Types . . . . .. .. .. ... .... 90

5.3.2  Hash Codes for Compound Objects. . . . . . .. ... ... .. ... 91

5.3.3 Hash Codes for Arrays and Strings . . . . . .. ... ... ...... 92

5.4 Discussion and Exercises . . . . . . . ... 0L s 95

6 Binary Trees 99
6.1 BinaryTree: A Basic Binary Tree . . . . . .. ... ... ... ... ..., 100
6.1.1 Recursive Algorithms . . . . . . ... ... ... .. 101

6.1.2 Traversing Binary Trees . . . . . . . . . . . .. ... ... 101

6.2 BinarySearchTree: An Unbalanced Binary Search Tree . . . . . .. .. .. 104
6.2.1 Searching . . . . . .. . .. 104

6.2.2 Inserting. . . . . . . . . . e 106

6.2.3 Deleting . . . . . . ... 108

6.2.4  Summary . . ... .o e e e e e e 110

6.3 Discussion and Exercises . . . . . .. ... 0 o 110

7 Random Binary Search Trees 113
7.1 Random Binary Search Trees . . . . . . . .. .. ... ... ... ..., 113

vii



Contents Contents

7.1.1 Proof of Lemma 7.1 . . . . .. ... ... 115

T.1.2  Summary . . ... . e e e e 117

7.2 Treap: A Randomized Binary Search Tree . . . . . . . ... ... ... ... 117
721 Summary . . . . ... e e e e e 125

7.3 Summary and Exercises . . . . . ... L L 126

8 Scapegoat Trees 129
8.1 ScapegoatTree: A Binary Search Tree with Partial Rebuilding . . . . . . . 130
8.1.1 Analysis of Correctness and Running-Time . . . .. ... ... ... 133

8.1.2 Summary . . . . ... e e 135

8.2 Discussion and Exercises . . . . . . . ... L L 135

9 Red-Black Trees 139
9.1 2-4Trees . . . . . .. 140
9.1.1 Adding a Leaf . . .. . ... . .. ... 140

9.1.2 Removinga Leaf . . . . ... ... o o 142

9.2 RedBlackTree: A Simulated 2-4 Tree. . . . . . . ... .. ... ... .... 142
9.2.1 Red-Black Trees and 2-4 Trees . . . . ... ... .. ... ...... 144

9.2.2 Left-Leaning Red-Black Trees . . . . . . . . . .. .. ... .. .... 147

9.2.3 Addition. . . . . ... 148

924 Removal . . . . . .. 151

9.3 Summary . . ... L 156
9.4 Discussion and Exercises . . . . . . . ... L o oo 157

10 Heaps 161
10.1 BinaryHeap: An Implicit Binary Tree . . . . ... .. ... ... ... ... 161
10.1.1 Summary . . . . ..o e e e 166

10.2 MeldableHeap: A Randomized Meldable Heap . . . . .. ... .. ... .. 166
10.2.1 Analysis of merge(h1,h2) . . . . ... .. ... ... L. 168

10.2.2 Summary . . . ... e e e 170

10.3 Discussion and Exercises . . . . . . ... L0000 170




Contents Contents

11 Sorting Algorithms 171
11.1 Comparison-Based Sorting . . . . . . . . ... ... .. L oL 171
11.1.1 Merge-Sort . . . . . o o e e 171

11.1.2 Quicksort . . . . . . 174

11.1.3 Heap-sort . . . . . . . . . 177

11.1.4 A Lower-Bound for Comparison-Based Sorting . . . ... ... ... 179

11.2 Counting Sort and Radix Sort . . . . . . .. . ... ... . oL 182
11.2.1 Counting Sort . . . . . . . . . o 182

11.2.2 Radix-Sort . . . . . . . . 184

11.3 Discussion and Exercises . . . . . . . . .. Lo L o 185

X



Contents Contents




Chapter 1

Introduction

This chapter briefly reviews some of the main concepts used throughout the rest of the
book. Section 1.1 describes the interfaces implemented by all the data structures described
in this book. It should be considered required reading. The remaining sections discuss
asymptotic (big-Oh) notation, probability and randomization, the model of computation,
and the sample code and typesetting conventions. A reader with or without a background

in these areas can easily skip them now and come back to them later if necessary.

1.1 Interfaces

In discussing data structures, it is important to understand the difference between a data
structure’s interface and its implementation. An interface describes what a data structure

does, while an implementation describes how the data structure does it.

An interface, sometimes also called an abstract data type, defines the set of operations
supported by a data structure and the semantics, or meaning, of those operations. An
interface tells us nothing about how the data structure implements these operations, it
only provides the list of supported operations along with specifications about what types

of arguments each operation accepts and the value returned by each operation.

A data structure implementation on the other hand, includes the internal represen-
tation of the data structure as well as the definitions of the algorithms that implement the
operations supported by the data structure. Thus, there can be many implementations of a
single interface. For example, in Chapter 2, we will see implementations of the List inter-
face using arrays and in Chapter 3 we will see implementations of the List interface using
pointer-based data structures. Each implements the same interface, List, but in different

ways.
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1.1.1 The Queue, Stack, and Deque Interfaces

The Queue interface represents a collection of elements to which we can add elements and
remove the next element. More precisely, the operations supported by the Queue interface

are
e add(x): add the value x to the Queue
e remove(): remove the next (previously added) value, y, from the Queue and return y

Notice that the remove() operation takes no argument. The Queue’s queueing discipline
decides which element should be removed. There are many possible queueing disciplines,

the most common of which include FIFO, priority, and LIFO.

A FIFO (first-in-first-out) Queue removes items in the same order they were added,
much in the same way a queue (or line-up) works when checking out at a cash register in a

grocery store.

A priority Queue always removes the smallest element from the Queue, breaking
ties arbitrarily. This is similar to the way many airlines manage upgrades to the business
class on their flights. When a business-class seat becomes available it is given to the most

important customer waiting on an upgrade.

A very common queueing discipline is the LIFO (last-in-first-out) discipline. In
a LIFO Queue, the most recently added element is the next one removed. This is best
visualized in terms of a stack of plates; plates are placed on the top of the stack and also
removed from the top of the stack. This structure is so common that it gets its own name:
Stack. Often, when discussing a Stack, the names of add(x) and remove() are changed to

push(x) and pop(); this is to avoid confusing the LIFO and FIFO queueing disciplines.
A Deque is a generalization of both the FIFO Queue and LIFO Queue (Stack). A

Deque represents a sequence of elements, with a front and a back. Elements can be added
at the front of the sequence or the back of the sequence. The names of the operations on a
Deque are self-explanatory: addFirst(x), removeFirst(), addLast(x), and removeLast().
Notice that a Stack can be implemented using only addFirst(x) and removeFirst() while

a FIFO Queue can be implemented using only addLast(x) and removeFirst().
1.1.2 The List Interface: Linear Sequences

This book will talk very little about the FIFO Queue, Stack, or Deque interfaces. This is
because these interfaces are subsumed by the List interface. A List represents a sequence,

X0, -.,%n_1, of values. The List interface includes the following operations:
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1. size(): return n, the length of the list
2. get(i): return the value x;
3. set(i,x): set the value of x; equal to x

4. add(i,x): add x at position i, displacing xi,...,%xp_1;

Set xj41 =xj, forall j € {n—1,...,1}, increment n, and set x; = x

5. remove(i) remove the value x;, displacing xj 41, ...,Xy—1;

Set xj = xj41, for all j € {i,...,n— 2} and decrement n

Notice that these operations are easily sufficient to implement the Deque interface:

addFirst(x) = add(0,x)
removeFirst(x) = remove(0)
addLast(x) = add(size(),x)
removelast(x) = remove(size()— 1)

Although we will normally not discuss the Stack, Deque and FIFO Queue interfaces
very often in subsequent chapters, the terms Stack and Deque are sometimes used in the
names of data structures that implement the List interface. When this happens, it is to
highlight the fact that these data structures can be used to implement the Stack or Deque
interface very efficiently. For example, the ArrayDeque class is an implementation of the
List interface that can implement the Deque operations in constant (amortized) time per

operation.
1.1.3 The USet Interface: Unordered Sets

The USet interface represents an unordered set of elements. This is a set in the mathematical
sense. A USet contains n distinct elements; no element appears more than once; the elements

are in no specific order. A USet supports the following operations:

1. size(): return the number, n, of elements in the set

2. add(x): add the element x to the set if not already present;
Add x to the set provided that there is no element y in the set such that x equals y.

Return true if x was added to the set and false otherwise.
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3. remove(x): remove x from the set;
Find an element y in the set such that x equals y and remove y. Return y, or null if

no such element exists.

4. find(x): find x in the set if it exists;
Find an element y in the set such that y equals x. Return y, or null if no such element

exists.

These definitions are a bit fussy about distinguishing x, the element we are removing
or finding, from y, the element we remove or find. This is because x and y might actually
be distinct objects that are nevertheless treated as equal.! This is a very useful distinction
since it allows for the creation of dictionaries or maps that map keys onto values. This is
done by creating a compound object called a Pair that contains a key and a wvalue. Two
Pairs are treated as equal if their keys are equal. By storing Pairs in a USet, we can find
the value associated with any key k by creating a Pair, x, with key k and using the find(x)
method.

1.1.4 The SSet Interface: Sorted Sets

The SSet interface represents a sorted set of elements. An SSet stores elements from some
total order, so that any two elements x and y can be compared. In code examples, this will

be done with a method called compare(x,y) in which

<0 ifx<y
compare(x,y){ >0 ifx> y
=0 ifx=y

An SSet supports the size(), add(x), and remove(x) methods with exactly the same se-
mantics as in the USet interface. The difference between a USet and an SSet is in the

find(x) method:

4. find(x): locate x in the sorted set;
Find the smallest element y in the set such that y > x. Return y or null if no such

element exists.

This version of the find(x) operation is sometimes referred to as a successor search.
It differs in a fundamental way from USet.find(x) since it returns a meaningful result even

when there is no element in the set that is equal to x.

Tn Java, this is done by overriding the class’ equals(y) and hashCode() methods.
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The distinction between the USet and SSet find(x) operations is very important
and is very often missed. The extra functionality provided by an SSet usually comes with
a price that includes both a larger running time and a higher implementation complexity.
For example, the SSet implementations discussed in this book all have find(x) operations
with running times that are at least logarithmic in the size of the set. On the other hand,
the implementation of a USet as a ChainedHashTable in Chapter 5 has a find(x) operation
that runs in constant expected time. When choosing which of these structures to use, one

should always use a USet unless the extra functionality offered by an SSet is really needed.

1.2 Mathematical Background

In this section, we review some mathematical notations and tools used throughout this

book, including logarithms, big-Oh notation, and probability theory.
1.2.1 Logarithms

In this book, the expression log, k denotes the base-b logarithm of k. That is, the unique

value z that satisfies

b=k .

Most of the logarithms in this book are base 2 (binary logarithms), in which case we drop
the base, so that log k is shorthand for log, k.

Another logarithm that comes up several times in this book is the natural logarithm.
Here we use the notation In &k to denote log, k, where e — Fuler’s constant — is given by

1 n
e= lim (1 + > A2 2.71828 .
n

n—o0

The natural logarithm comes up frequently because it is the value of a particularly common

integral:

k
/ 1/zdez =Ink .

1

Two of the most common manipulations we do with logarithms are removing them from an

exponent:
blogb k _ k
and changing the base of a logarithm:
log, k
logy k = —2%— .
8o log, b
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For example, we can use these two manipulations to compare the natural and binary loga-

rithms
log k log k
g% ___ %6 = (In2)(log k) ~ 0.693147log k .

k= ae = ne)/n2)

1.2.2 Factorials

In one or two places in this book, the factorial function is used. For a non-negative integer

n, the notation n! (pronounced “n factorial”) denotes

Factorials appear because n! counts the number of distinct permutations, i.e., orderings, of

n distinct elements. For the special case n = 0, 0! is defined as 1.

The quantity n! can be approximated using Stirling’s Approximation:

n! =+2mn (ﬁ)nea(") ,
e

where

1 <a) < 1
— < a(n — .
12n+1 12n

Stirling’s Approximation also approximates In(n!):
1
In(n!) =nlnn —n+ 3 In(27n) + a(n)

(In fact, Stirling’s Approximation is most easily proven by approximating In(n!) = Inl +
In2+ - 4+ Inn by the integral flnlnndn =nlnn—n+1.)

Related to the factorial function are the binomial coefficients. For a non-negative

integer n and an integer k € {0,...,n}, the notation (Z) denotes:

(1) = mo

The binomial coefficient (}) (pronounced “n choose k”) counts the number of subsets of an
n element set that have size k, i.e., the number of ways of choosing k distinct integers from
the set {1,...,n}.

1.2.3 Asymptotic Notation

When analyzing data structures in this book, we will want to talk about the running times
of various operations. The exact running times will, of course, vary from computer to

computer and even from run to run on an individual computer. Therefore, instead of
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analyzing running times exactly, we will use the so-called big-Oh notation: For a function

f(n), O(f(n)) denotes a set of functions,
O(f(n)) = {g(n) : there exists ¢ > 0, and ng such that g(n) < c- f(n) for all n > ng} .

Thinking graphically, this set consists of the functions g(n) where c- f(n) starts to dominate

g(n) when n is sufficiently large.

We generally use asymptotic notation to simplify functions. For example, in place

of 5nlogn + 8n — 200 we can write, simply, O(nlogn). This is proven as follows:

Snlogn + 8n — 200 < bnlogn + 8n
< b5nlogn + 8nlogn for n > 2 (so that logn > 1)

< 13nlogn

which demonstrates that the fundtion f(n) = 5nlogn+8n—200 is in the set O(logn) using

the constants ¢ = 13 and ng = 2.

There are a number of useful shortcuts when using asymptotic notation. First:
O(n) C O(n?) ,
for any ¢; < ¢o. Second: For any constants a,b,c > 0,
O(a) € O(logn) Cc O(n®) C O(c") .

These inclusion relations can be multiplied by any positive value, and they still hold. For

example, multiplying by n yields:
O(n) € O(nlogn) C O(n'*?) c O(nc") .

Continuing in a long and distinguished tradition, we will abuse this notation by
writing things like f1(n) = O(f(n)) when what we really mean is fi(n) € O(f(n)). We
will also make statements like “the running time of this operation is O(f(n))” when this
statement should be “the running time of this operation is a member of O(f(n)).” These
shortcuts are mainly to avoid awkward language and to make it easier to use asymptotic

notation within strings of equations.

A particularly strange example of this comes when we write statements like

T(n) =2logn+O(1) .
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Again, this would be more correctly written as

T'(n) < 2logn + [some member of O(1)] .

The expression O(1) also brings up another issue. Since there is no variable in this
expression, it may not be clear what variable is getting arbitrarily large. Without context,
there is no way to tell. In the example above, since the only variable in the rest of the
equation is n, we can assume that this should be read as T'(n) = 2logn + O(f(n)), where
f(n) =1.

In a few cases, we will use asymptotic notation on functions with more than one
variable. There seems to be no standard for this, but for our purposes, the following

definition is sufficient:

g(ni,...,ng) : there exists ¢ > 0, and z such that
O(f(nla" 7nk)) = g(n17' . ';nk;) S C: f(nla"'7nk‘)
for all ny,...,ng such that g(ni,...,ng) > 2
This definition captures the situation we really care about: when the arguments nq,...,ng

make ¢ take on large values. This agrees with the univariate definition of O(f(n)) when
f(n) is an increasing function of n. The reader should be warned that, although this works
for our purposes, other texts may treat multivariate functions and asymptotic notation

differently.
1.2.4 Randomization and Probability

Some of the data structures presented in this book are randomized; they make random
choices that are independent of the data being stored in them or the operations being
performed on them. For this reason, performing the same set of operations more than once
using these structures could result in different running times. When analyzing these data

structures we are interested in their average or expected running times.

Formally, the running time of an operation on a randomized data structure is a
random variable and we want to study its expected value. For a discrete random variable X
taking on values in some countable universe U, the expected value of X, denoted by E[X]

is given the by the formula
EX] =) z-Pr{X=2a} .
zeU

Here Pr{€} denotes the probability that the event £ occurs. In all the examples in this

book, these probabilities are only with respect to whatever random choices are made by the
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randomized data structure; there is no assumption that the data stored in the structure is

random or that the sequence of operations performed on the data structure is random.

One of the most important properties of expected values is linearity of expectation:

For any two random variables X and Y,
E[X +Y]=E[X]|+E[Y] .

More generally, for any random variables X1, ..., Xy,

k k
ZXk] => ElX)] .
=1 i=1

Linearity of expectation allows us to break down complicated random variables (like the

E

left hand sides of the above equations) into sums of simpler random variables (the right
hand sides).

A wuseful trick, that we will use repeatedly, is that of defining indicator random
variables. These binary variables are useful when we want to count something and are best
illustrated by an example. Suppose we toss a fair coin k times and we want to know the
expected number of times the coin comes up heads. Intuitively, we know the answer is k/2,

but if we try to prove it using the definition of expected value, we get

k
BE[X] =) i-Pr{X =i}
=0

:iic)/zk

1=0

k—1
k- (k B 1) /2"
=0 L

This requires that we know enough to calculate that Pr{X =i} = (]f) /2% that we know the
binomial identity z(f) = k‘(k;l), and that we know the binomial identity Zf:o (k) =2k,

)

Using indicator variables and linearity of expectation makes things much easier: For
each i € {1,...,k}, define the indicator random variable
1 if the ith coin toss is heads

0 otherwise.

Then
E[L]=(1/2)1+ (1/2)0=1/2 .
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Now, X = Zle I;, so

k
=D Bl
121
=) 1/2
= k/2 .

This is a bit more long-winded, but doesn’t require that we know any magical identities
or compute any non-trivial probabilities. Even better: It agrees with the intuition that we
expect half the coins to come up heads precisely because each individual coin has probability

1/2 of coming up heads.
1.3 The Model of Computation

In this book, we will analyze the theoretical running times of operations on the data struc-
tures we study. To do this precisely, we need a mathematical model of computation. For
this, we use the w-bit word-RAM model. In this model, we have access to a random access
memory consisting of cells, each of which stores a w-bit word. This implies a memory cell
can represent, for example, any integer in the set {0,...,2" — 1}.

In the word-RAM model, basic operations on words take constant time. This in-
cludes arithmetic operations (+, —, *, /, %), comparisons (<, >, =, <, >), and bitwise

boolean operations (bitwise-AND, OR, and exclusive-OR).

Any cell can be read or written in constant time. Our computer’s memory is man-
aged by a memory management system from which we can allocate or deallocate a block
of memory of any size we like. Allocating a block of memory of size k takes O(k) time and
returns a reference to the newly-allocated memory block. This reference is small enough to

be represented by a single word.

The word-size, w, is a very important parameter of this model. The only assumption
we will make on w is that it is at least w > logn, where n is the number of elements stored
in any of our data structures. This is a fairly modest assumption, since otherwise a word is

not even big enough to count the number of elements stored in the data structure.

Space is measured in words so that, when we talk about the amount of space used by

a data structure, we are referring to the number of words of memory used by the structure.
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All our data structures store values of a generic type T and we assume an element of type
T occupies one word of memory. (In reality, we are storing references to objects of type T,

and these references occupy only one word of memory.)

The w-bit word-RAM model is a fairly close match for the (32-bit) Java Virtual
Machine (JVM) when w = 32. The data structures presented in this book don’t use any

special tricks that are not implementable on the JVM and most other architectures.

1.4 Code Samples

The code samples in this book are written in the Java programming language. However
to make the book accessible even to readers not familiar with all of Java’s constructs and
keywords, the code samples have been simplified. For example, a reader won’t find any
of the keywords public, protected, private, or static. A reader also won’t find much
discussion about class hierarchies. Which interfaces a particular class implements or which

class it extends, if relevant to the discussion, will be clear from the accompanying text.

These conventions should make most of the code samples understandable by anyone
with a background in any of the languages from the ALGOL tradition, including B, C, C++,
C+#, D, Java, JavaScript, and so on. Readers who want the full details of all implementations

are encouraged to look at the Java source code that accompanies this book.

This book mixes mathematical analysis of running times with Java source code for
the algorithms being analyzed. This means that some equations contain variables also
found in the source code. These variables are typeset consistently, both within the source
code and within equations. The most common such variable is the variable n that, without

exception, always refers to the number of items currently stored in the data structure.

1.5 List of Data Structures

The following table summarize the performance of data structures described in this book

that implement each of the interfaces, List, USet, and SSet, described in Section 1.1.
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List implementations
get(i)/set(i,x) add(i,x)/remove(i)
ArrayStack 0(1) O(1+n—1i)A § 2.1
ArrayDeque 0(1) O(1 + min{i,n — i})A §2.4
DualArrayDeque O(1) O(1 4 min{i,n —i})A §2.5
RootishArrayStack | O(1) O(1+n—1i)A § 2.6
DLList O(1+min{i,n—1i}) O(1+ min{i,n—i}) §3.2
SEList O(1 +min{i,n —i}/b) | O(b +min{i,n —i}/b)* | § 3.3
SkiplistList O(logn)F O(logn)® §4.3
USet implementations
find(x) add(x)/remove(x)
ChainedHashTable | O(1)F O(1)AE §5.1
LinearHashTable | O(1)F O(1)AF §5.2
SSet implementations
find(x) add(x)/remove(x)
SkiplistSSet O(logn)F O(logn)® §4.2
Treap O(logn)F O(logn)® §7.2
ScapegoatTree O(logn) O(logn)A § 8.1
RedBlackTree O(logn) O(logn) §9.2
(Priority) Queue implementations
findMin() add(x)/remove()
BinaryHeap 0(1) O(logn)A § 10.1
MeldableHeap 0(1) O(logn)® § 10.2

1.6 References

The List, USet, and SSet interfaces described in Section 1.1 are influenced by the Java
Collections Framework [40]. These are essentially simplified versions of the List, Set/Map,

and SortedSet/SortedMap interfaces found in the Java Collections Framework. Indeed,

ADenotes an amortized running time. See Chapter 2.
EDenotes an ezpected running time. See Section 1.2.4.
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the accompanying source code includes wrapper classes for making USet and SSet imple-

mentations into Set, Map, SortedSet, and SortedMap implementations.

For more information on basic probability, especially as it relates to computer sci-
ence, see the textbook by Ross [50]. Another good reference, that covers both asymptotic
notation and probability, is the textbook by Graham, Knuth, and Patashnik [30].

Readers wanting to brush up on their Java programming can find many Java tuto-

rials online [42].
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Chapter 2

Array-Based Lists

In this chapter, we study implementations of the List and Queue interfaces where the un-
derlying data is stored in an array, called the backing array. The following table summarizes

the running times of operations for the data structures presented in this chapter:

get(i)/set(i,x) | add(i,x)/remove(i)

(
)
1) O(min{i,n —1i})
)
)

ArrayStack o1 On—1)

ArrayDeque O( (

DualArrayDeque o1 O(min{i,n —i})
( (

RootishArrayStack | O On—1i)

Data structures that work by storing data in a single array have many advantages

and limitations in common:

e Arrays offer constant time access to any value in the array. This is what allows get(i)

and set(i,x) to run in constant time.

e Arrays are not very dynamic. Adding or removing an element near the middle of a
list means that a large number of elements in the array need to be shifted to make
room for the newly added element or to fill in the gap created by the deleted element.
This is why the operations add(i,x) and remove(i) have running times that depend

onn and i.

e Arrays cannot expand or shrink. When the number of elements in the data structure
exceeds the size of the backing array, a new array needs to be allocated and the
data from the old array needs to be copied into the new array. This is an expensive

operation.
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The third point is important. The running times cited in the table above do not include
the cost of growing and shrinking the backing array. We will see that, if carefully managed,
the cost of growing and shrinking the backing array does not add much to the cost of an
average operation. More precisely, if we start with an empty data structure, and perform
any sequence of m add(i,x) or remove(i) operations, then the total cost of growing and
shrinking the backing array, over the entire sequence of m operations is O(m). Although
some individual operations are more expensive, the amortized cost, when amortized over

all m operations, is only O(1) per operation.
2.1 ArrayStack: Fast Stack Operations Using an Array

An ArrayStack implements the list interface using an array a, called the backing array. The
list element with index i is stored in a[i]. At most times, a is larger than strictly necessary,

so an integer n is used to keep track of the number of elements actually stored in a. In this

way, the list elements are stored in a[0],...,a[n — 1] and, at all times, a.length > n.
ArrayStack
T a;
int n;
int size() {
return n;
}

2.1.1 The Basics

Accessing and modifying the elements of an ArrayStack using get(i) and set(i, x) is trivial.
After performing any necessary bounds-checking we simply return or set, respectively, a[i].

ArrayStack

T get(int i) {
if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();
return al[il;

T set(int i, T x) {
if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();
Ty = alil;
ali] = x;
return y;

The operations of adding and removing elements from an ArrayStack are illustrated

in Figure 2.1. To implement the add(i, x) operation, we first check if a is already full. If so,
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birfefaf | |
\\ add(2,e)
(bfrfefela] |
add (5,1)
birfefefa]r]
! I add(5,e)*
(olrfefefafe[ [ [ ][]

’//’// remove (4)
‘// remove (4)

remove (4)*

'
bfefefel [ [ ]
fefifel [ [ ]]

01 2 3 4 5 6 7 8 9 1011

set(2,1)

Figure 2.1: A sequence of add(i,x) and remove(i) operations on an ArrayStack. Arrows
denote elements being copied. Operations that result in a call to resize() are marked with

an asterisk.

we call the method resize() to increase the size of a. How resize() is implemented will be
discussed later. For now, it is sufficient to know that, after a call to resize(), we can be sure
that a.length > n. With this out of the way, we now shift the elements a[il, ..., aln — 1]

right by one position to make room for x, set a[i] equal to x, and increment n.

ArrayStack

void add(int i, T x) {
if (i < 0 || 1 > n) throw new IndexOutOfBoundsException();
if (n + 1 > a.length) resize();
for (int j =n; j > i; j--)
aljl = alj-11;
ali] = x;
n++;

}
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If we ignore the cost of the potential call to resize(), the cost of the add(i, x) operation is
proportional to the number of elements we have to shift to make room for x. Therefore the
cost of this operation (ignoring the cost of resizing a) is O(n — i + 1).

Implementing the remove(i) operation is similar. We shift the elements a[i + 1],...,a[n — 1]
left by one position (overwriting a[i]) and decrease the value of n. After doing this, we
check if n is getting much smaller than a.length by checking if a.length > 3n. If so, we

call resize() to reduce the size of a.
ArrayStack

T remove(int i) {
if (1 <0 ||l 1 >n - 1) throw new IndexOutOfBoundsException();
T x = alil;
for (int j = i; j < n-1; j++)
aljl = alj+1];

n--;
if (a.length >= 3#%n) resize();
return x;

If we ignore the cost of the resize() method, the cost of a remove(i) operation is propor-

tional to the number of elements we shift, which is O(n — 1).
2.1.2 Growing and Shrinking

The resize() method is fairly straightforward; it allocates a new array b whose size is 2n
and copies the n elements of a into the first n positions in b, and then sets a to b. Thus,

after a call to resize(), a.length = 2n.

ArrayStack
void resize() {

T b = newArray(Math.max(n*2,1));

for (int 1 = 0; i < n; i++) {
bl[i] = alil;

}

a = b;

Analyzing the actual cost of the resize() operation is easy. It allocates an array b

of size 2n and copies the n elements of a into b. This takes O(n) time.
The running time analysis from the previous section ignored the cost of calls to

resize(). In this section we analyze this cost using a technique known as amortized analysis.

This technique does not try to determine the cost of resizing during each individual add(i, x)
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and remove(i) operation. Instead, it considers the cost of all calls to resize() during a

sequence of m calls to add(i, x) or remove(i). In particular, we will show:

Lemma 2.1. If an empty ArrayList is created and any sequence of m > 1 calls to add(i, x)

and remove(i) are performed, then the total time spent during all calls to resize() is O(m).

Proof. We will show that anytime resize() is called, the number of calls to add or remove
since the last call to resize() is at least n/2 — 1. Therefore, if n; denotes the value of n
during the ith call to resize() and r denotes the number of calls to resize(), then the

total number of calls to add(i,x) or remove(i) is at least

T

Z(ni/Z—l) <m,

i=1
which is equivalent to
T
Z n; <2m+ 2r .
i=1

On the other hand, the total time spent during all calls to resize() is

> O(mi) <O(m+7)=0(m)

i=1
which will prove the lemma since r is not more than m. All that remains is to show that the
number of calls to add(i,x) or remove(i) between the (i — 1)th and the ith call to resize()

is at least n;/2.

There are two cases to consider. In the first case, resize() is being called by
add(i, x) because the backing array a is full, i.e., a.length = n = n;. Consider the previous
call to resize(): After this previous call, the size of a was a.length, but the number of
elements stored in a was at most a.length/2 = n;/2. But now the number of elements
stored in a is n; = a.length, so there must have been at least n;/2 calls to add(i,x) since
the previous call to resize().

The second case to consider is when resize() is being called by remove(i) because
a.length > 3n = 3n;. Again, after the previous call to resize() the number of elements
stored in a was at least a.length/2 —1.! Now there are n; < a.length/3 elements stored in

a. Therefore, the number of remove(i) operations since the last call to resize() is at least

a.length/2 — 1 — a.length/3 = a.length/6 — 1 = (a.length/3)/2 —1>n;/2 -1 .

!The — 1 in this formula accounts for the special case that occurs when n = 0 and a.length = 1.
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In either case, the number of calls to add(i, x) or remove(i) that occur between the (i —1)th
call to resize() and the ith call to resize() is at least n;/2 — 1, as required to complete

the proof. O

2.1.3 Summary

The following theorem summarizes the performance of an ArrayStack:

Theorem 2.1. An ArrayStack implements the List interface. Ignoring the cost of calls

to resize(), an ArrayStack supports the operations
e get(i) and set(i,x) in O(1) time per operation; and
e add(i,x) and remove(i) in O(1 +n — i) time per operation.

Furthermore, beginning with an empty ArrayStack, any sequence of m add(i,x) and remove(i)

operations results in a total of O(m) time spent during all calls to resize().

The ArrayStack is an efficient way to implement a Stack. In particular, we can
implement push(x) as add(n, x) and pop() as remove(n — 1), in which case these operations
p push(x) (n,x) and pop , p

will run in O(1) amortized time.
2.2 FastArrayStack: An Optimized ArrayStack

Much of the work done by an ArrayStack involves shifting (by add(i, x) and remove(i)) and
copying (by resize()) of data. In the implementations shown above, this was done using
for loops. It turns out that many programming environments have specific functions that
are very efficient at copying and moving blocks of data. In the C and C++ programming lan-
guages there is the memcpy(d, s, n) function. In Java there is the System.arraycopy(s,i,d, j,n)

method.

FastArrayStack
void resize() {
T b = newArray(Math.max(2*n,1));
System.arraycopy(a, 0, b, 0, n);

a = b;
}
void add(int i, T x) {
if (i < 0 || 1 > n) throw new IndexOutOfBoundsException();

if (n + 1 > a.length) resize();
System.arraycopy(a, i, a, i+l, n-i);
alil = x;

n++;

I
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}
T remove(int i) {
if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();
T x = alil;
System.arraycopy(a, i+1l, a, i, n-i-1);
n--;
if (a.length >= 3%n) resize();
return Xx;

These functions are usually highly optimized and may even use special machine
instructions that can do this copying much faster than we could do using a for loop.
Although using these functions does not asymptotically decrease the running times, it
can still be a worthwhile optimization. In the Java implementations here, the use of
System.arraycopy(s, i,d, j,n) resulted in speedups of a factor of 2-3 depending on the

types of operations performed.
2.3 ArrayQueue: An Array-Based Queue

In this section, we present the ArrayQueue data structure, which implements a FIFO (first-
in-first-out) queue; elements are removed (using the remove() operation) from the queue in
the same order they are added (using the add(x) operation).

Notice that an ArrayStack is a poor choice for an implementation of a FIFO queue.
The reason is that we must choose one end of the list to add to and then remove from the
other end. One of the two operations must work on the head of the list, which involves
calling add(i,x) or remove(i) with a value of i = 0. This gives a running time of O(n).

To obtain an efficient array-based implementation of a queue, we first notice that
the problem would be easy if we had an infinite array a. We could maintain one index j
that keeps track of the next element to remove and an integer n that counts the number of

elements in the queue. The queue elements would always be stored in
a[j]?a[j + 1]7"'7a[j +n-— 1] :

Initially, both j and n would be set to 0. To add an element, we would place it in a[j + n]
and increment n. To remove an element, we would remove it from a[j], increment j, and

decrement n.

Of course, the problem with this solution is that it requires an infinite array. An

ArrayQueue simulates this by using a finite array a and modular arithmetic. This is the
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kind of arithmetic used when we are talking about the time of day. For example 10 o’clock

plus 5 hours gives 3 o’clock. Formally, we say that
10+5=15=3 (mod 12) .

We read the latter part of this equation as “15 is congruent to 3 modulo 12.” We can also

treat mod as a binary operator, so that

15mod 12 =3 .

More generally, for an integer a and positive integer m, a mod m is the unique
integer r € {0,...,m — 1} such that a = r + km for some integer k. Less formally, the
value r is the remainder we get when we divide a by m. In many programming languages,
including Java, the mod operator is represented using the % symbol.?

Modular arithmetic is useful for simulating an infinite array, since i mod a.length
always gives a value in the range 0,...,a.length — 1. Using modular arithmetic we can

store the queue elements at array locations
a[j%ha.lengthl, a[(j + 1)%a.length],...,a[(j + n — 1)%a.length] .
This treats a like a circular array in which array indices exceeding a.length — 1 “wrap

around” to the beginning of the array.

The only remaining thing to worry about is taking care that the number of elements

in the ArrayQueue does not exceed the size of a.
ArrayQueue

T[ a;
int j;
int n;

A sequence of add(x) and remove() operations on an ArrayQueue is illustrated in
Figure 2.2. To implement add(x), we first check if a is full and, if necessary, call resize()

to increase the size of a. Next, we store x in a[(j + n)%a.length] and increment n.

ArrayQueue
boolean add(T x) {
if (n + 1 > a.length) resize();
al(j+n) % a.length] = x;
n++;

return true;

}

2This is sometimes referred to as the brain-dead mod operator since it does not correctly implement the

mathematical mod operator when the first argument is negative.

22



2. Array-Based Lists 2.3. ArrayQueve: An Array-Based Queue

j-2a=s [T alo[e] ]

add(d)
j-2n-1 [ Talo]<]q]

add(e)
j=2n=5 ’e||a|b|c|d‘

remove ()
—an=s [ T[]

add (f)
j=3,n=5 ’e|f||b|c|d‘

add(g)

j=3,n=6 elflg|blc|d
add(h)*
j=0n=26 blcldje|flg

j=0n=7 [bfcldfeftfefn] | [ | [ |

remove ()

j=ta=6 [ [elafe[r]efn] | [ [ ] ]

0 1.2 34 5 6 7 8 9 1011

Figure 2.2: A sequence of add(x) and remove(i) operations on an ArrayQueue. Arrows
denote elements being copied. Operations that result in a call to resize() are marked with

an asterisk.
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To implement remove() we first store a[j] so that we can return it later. Next, we
decrement n and increment j (modulo a.length) by setting j = (j + 1) mod a.length.
Finally, we return the stored value of a[j]. If necessary, we may call resize() to decrease

the size of a.

ArrayQueue

T remove() {
if (n == 0) throw new NoSuchElementException();

T x = aljl;

j=( + 1) % a.length;

n-=-3

if (a.length >= 3%n) resize(Q);
return x;

Finally, the resize() operation is very similar to the resize() operation of Array-

Stack. It allocates a new array b of size 2n and copies

a[jl,a[(j + 1)%a.length],...,a[(j + n — 1)%a.length]
onto
b“ﬂab[lh abhl_’ﬂ
and sets j = 0.
ArrayQueue

void resize() {
T b = newArray(Math.max(1l,n*2));
for (int k = 0; k < n; k++)
b[k] = al[(j+k) % a.length];
a = b;
j=0;

2.3.1 Summary

The following theorem summarizes the performance of the ArrayQueue data structure:

Theorem 2.2. An ArrayQueue implements the (FIFO) Queue interface. Ignoring the cost
of calls to resize(), an ArrayQueve supports the operations add(x) and remove() in O(1)
time per operation. Furthermore, beginning with an empty ArrayQueuve, any sequence of m
add(i,x) and remove(i) operations results in a total of O(m) time spent during all calls to

resize().
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2.4 ArrayDeque: Fast Deque Operations Using an Array

The ArrayQueue from the previous section is a data structure for representing a sequence
that allows us to efficiently add to one end of the sequence and remove from the other end.
The ArrayDeque data structure allows for efficient addition and removal at both ends. This
structure implements the List interface using the same circular array technique used to

represent an ArrayQueue.

ArrayDeque

T[] a;
int j;
int n;

The get(i) and set(i,x) operations on an ArrayDeque are straightforward. They
get or set the array element a[(j + i) mod a.length)].
ArrayDeque

T get(int i) {
if (i < 0 || 1 > n-1) throw new IndexOutOfBoundsException() ;
return al[(j+i)%a.length];

T set(int i, T x) {
if (1 < 0 ||l 1 > n-1) throw new IndexOutOfBoundsException();
T y = a[(j+i)%a.length];
al(j+i)%a.length] = x;
return y;

The implementation of add(i, x) is a little more interesting. As usual, we first check
if a is full and, if necessary, call resize() to resize a. Remember that we want this operation
to be fast when i is small (close to 0) or when i is large (close to n). Therefore, we check
if i < n/2. If so, we shift the elements a[0],...,a[i — 1] left by one position. Otherwise
(i > n/2), we shift the elements a[i],...,a[n — 1] right by one position. See Figure 2.3 for
an illustration of add(i,x) and remove(x) operations on an ArrayDeque.

ArrayDeque

void add(int i, T x) {
if (4 <0 |l i > n) throw new IndexOutOfBoundsException();
if (n+1 > a.length) resize();
if (1 < n/2) { // shift al[0],..,ali-1] left one position
j=1( ==0)7a.length -1 : j - 1;
for (int k = 0; k <= i-1; k++)
al(j+k)%a.length]l = al[(j+k+1)%a.length];
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remove (2)
j=tmn=7 | |albfdfe[t]gln] [ [ | |

add (4,x)
j=tn=s8 | Ja[bldfe[x[[g[b] [ [ |
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Figure 2.3: A sequence of add(i,x) and remove(i) operations on an ArrayDeque. Arrows

denote elements being copied.

} else { // shift alil,..,aln-1] right one position
for (int k = n; k > i; k—-)
al[(j+k)%a.length] = a[(j+k-1)%a.length];
}
al(j+i)%a.length] = x;
n++;

I

By doing the shifting in this way, we guarantee that add(i, x) never has to shift more
than min{i,n — i} elements. Thus, the running time of the add(i,x) operation (ignoring
the cost of a resize() operation) is O(1 + min{i,n —i}).

The remove(i) operation is similar. It either shifts elements a[0],...,a[i — 1] right
by one position or shifts the elements a[i + 1],...,a[n — 1] left by one position depending
on whether i < n/2. Again, this means that remove(i) never spends more than O(1 +

min{i,n — i}) time to shift elements.

ArrayDeque
T remove(int i) {
if (1 <0 |l 1 >n - 1) throw new IndexOutOfBoundsException();
T x = al[(j+i)%a.length];
if (1 < n/2) { // shift al[0],..,[i-1] right one position

for (int k = i; k > 0; k--)
al(j+k)%ha.length] = al[(j+k-1)%a.length];
j=( + 1) % a.length;
} else { // shift ali+1],..,a[n-1] left one position
for (int k = i; k < n-1; k++)
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al(j+k)ha.length] = al[(j+k+1)%a.length];
}
n--;
if (3%*n < a.length) resize();
return x;

241 Summary
The following theorem summarizes the performance of the ArrayDeque data structure:

Theorem 2.3. An ArrayDeque implements the List interface. Ignoring the cost of calls

to resize(), an ArrayDeque supports the operations
o get(i) and set(i,x) in O(1) time per operation; and
e add(i,x) and remove(i) in O(1 + min{i,n —1i}) time per operation.

Furthermore, beginning with an empty ArrayDeque, any sequence of m add(i,x) and remove(i)

operations results in a total of O(m) time spent during all calls to resize().

2.5 DualArrayDeque: Building a Deque from Two Stacks

Next, we present another data structure, the DualArrayDeque that achieves the same per-
formance bounds as an ArrayDeque by using two ArrayStacks. Although the asymptotic
performance of the DualArrayDeque is no better than that of the ArrayDeque, it is still
worth studying since it offers a good example of how to make a sophisticated data structure

by combining two simpler data structures.

A DualArrayDeque represents a list using two ArrayStacks. Recall that an Array-
Stack is fast when the operations on it modify elements near the end. A DualArrayDeque
places two ArrayStacks, called front and back, back-to-back so that operations are fast

at either end.

DualArrayDeque
List<T> front;

List<T> back;

A DualArrayDeque does not explicitly store the number, n, of elements it contains.
It doesn’t need to, since it contains n = front.size()+back.size() elements. Nevertheless,
when analyzing the DualArrayDeque we will still use n to denote the number of elements

it contains.
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DualArrayDeque
int size() {

return front.size() + back.size();

}

The front ArrayStack contains list elements with indices 0, ..., front.size() — 1,
but stores them in reverse order. The back ArrayStack contains list elements with indices
front.size(),...,size()—1 in the normal order. In this way, get(i) and set(i, x) translate
into appropriate calls to get(i) or set(i,x) on either front or back, which take O(1) time
per operation.

DualArrayDeque

T get(int i) {
if (i < front.size()) {
return front.get(front.size()-i-1);
} else {
return back.get(i-front.size());
}
}
T set(int i, T x) {
if (i < front.size()) {
return front.set(front.size()-i-1, x);

} else {
return back.set(i-front.size(), x);
}
}

Note that, if an index i < front.size(), then it corresponds to the element of front

at position front.size() — i — 1, since the elements of front are stored in reverse order.

Adding and removing elements from a DualArrayDeque is illustrated in Figure 2.4.

The add(i,x) operation manipulates either front or back, as appropriate:

DualArrayDeque

void add(int i, T x) {
if (i < front.size()) {
front.add(front.size()-i, x);
} else {
back.add(i-front.size(), x);
}

balance();
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add(3,x)

4 add (4,7)

remove (0)*

Figure 2.4: A sequence of add(i, x) and remove(i) operations on a DualArrayDeque. Arrows
denote elements being copied. Operations that result in a rebalancing by balance() are

marked with an asterisk.

The add(i,x) method performs rebalancing of the two ArrayStacks front and
back, by calling the balance() method. The implementation of balance() is described
below, but for now it is sufficient to know that balance() ensures that, unless size() < 2,
front.size() and back.size() do not differ by more than a factor of 3. In particular,

3 - front.size() > back.size() and 3 - back.size() > front.size().

Next we analyze the cost of add(i,x), ignoring the cost of the balance() operation.
If i < front.size(), then add(i,x) becomes front.add(front.size() —1i —1,x). Since

front is an ArrayStack, the cost of this is
O(front.size() — (front.size() —i—1)+1)=0(1+1) . (2.1)

On the other hand, if i > front.size(), then add(i,x) becomes back.add(i — front.size(),x).
The cost of this is

O(back.size() — (i — front.size())+1)=0mn—1i+1) . (2.2)

Notice that the first case (2.1) occurs when i < n/4. The second case (2.2) occurs
when i > 3n/4. When n/4 < i < 3n/4, we can’t be sure whether the operation affects

front or back, but in either case, the operation takes O(n) = O(i) = O(n — i) time, since
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i >n/4 and n — i > n/4. Summarizing the situation, we have

O(1+1) ifi <n/4
Running time of add(i,x) < ¢ O(n) ifn/4<i<3n/4
O(1+n—1i) ifi>3n/4

Thus, the running time of add(i,x) (ignoring the cost of the call to balance()) is O(1 +
min{i,n —1i}).
The remove(i) operation, and its analysis, is similar to the add(i, x) operation.

DualArrayDeque

T remove(int i) {
T x;
if (i < front.size()) {
x = front.remove(front.size()-i-1);
} else {
x = back.remove(i-front.size());
}
balance();
return x;

2.5.1 Balancing

Finally, we study the balance() operation performed by add(i,x) and remove(i). This
operation is used to ensure that neither front nor back gets too big (or too small). It
ensures that, unless there are fewer than 2 elements, each of front and back contain at
least n/4 elements. If this is not the case, then it moves elements between them so that
front and back contain exactly |n/2| elements and [n/2] elements, respectively.

DualArrayDeque

void balance() {

int n = size();

if (3*front.size() < back.size()) {
int s = n/2 - front.size();
List<T> 11 = newStack();
List<T> 12 = newStack();
11.addAll (back.subList (0,s));
Collections.reverse(11);
11.addAll(front);
12.addAll(back.subList (s, back.size()));
front = 11;
back = 12;

} else if (3*back.size() < front.size()) {
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int s = front.size() - n/2;

List<T> 11 = newStack();

List<T> 12 = newStack();
11.addAll(front.subList(s, front.size()));
12.addAl1(front.subList (0, s));
Collections.reverse(12);

12.addAll (back) ;

front = 11;

back = 12;

There is not much to analyze. If the balance() operation does rebalancing, then it
moves O(n) elements and this takes O(n) time. This is bad, since balance() is called with
each call to add(i, x) and remove(i). However, the following lemma shows that, on average,

balance() only spends a constant amount of time per operation.

Lemma 2.2. If an empty DualdArrayDeque is created and any sequence of m > 1 calls
to add(i,x) and remove(i) are performed, then the total time spent during all calls to

balance() is O(m).

Proof. We will show that, if balance() is forced to shift elements, then the number of
add(i, x) and remove(i) operations since the last time balance() shifted any elements is at
least n/2 — 1. As in the proof of Lemma 2.1, this is sufficient to prove that the total time
spent by balance() is O(m).

We will perform our analysis using the potential method. Define the potential of the

DualArrayDeque as

® = |front.size() — back.size()| .

The interesting thing about this potential is that a call to add(i,x) or remove(i) that does

not do any balancing can increase the potential by at most 1.

Observe that, immediately after a call to balance() that shifts elements, the poten-

tial, ®¢, is at most 1, since

P = [|n/2] = [n/2]| <1 .

Consider the situation immediately before a call to balance() that shifts elements

and suppose, without loss of generality, that balance() is shifting elements because 3front.size() <
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back.size(). Notice that, in this case,

n = front.size() + back.size()
< back.size()/3 + back.size()

4
= —back.size()
3
Furthermore, the potential at this point in time is

®; = back.size() — front.size()
> back.size() — back.size()/3

2 .
= gback.31ze()
2 3

> gXZH

= n/2

Therefore, the number of calls to add(i,x) or remove(i) since the last time balance()

shifted elements is at least &1 — ®y > n/2 — 1. This completes the proof. O

2.5.2 Summary

The following theorem summarizes the performance of a DualArrayStack

Theorem 2.4. A DualArrayDeque implements the List interface. Ignoring the cost of

calls to resize() and balance(), a DualArrayDeque supports the operations
e get(i) and set(i,x) in O(1) time per operation; and
e add(i,x) and remove(i) in O(1 4+ min{i,n — i}) time per operation.

Furthermore, beginning with an empty DualArrayDeque, any sequence of m add(i,x) and
remove(i) operations results in a total of O(m) time spent during all calls to resize() and

balance().

2.6 RootishArrayStack: A Space-Efficient Array Stack

One of the drawbacks of all previous data structures in this chapter is that, because they
store their data in one or two arrays, and they avoid resizing these arrays too often, the
arrays are frequently not very full. For example, immediately after a resize() operation
on an ArrayStack, the backing array a is only half full. Even worse, there are times when

only 1/3 of a contains data.
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Figure 2.5: A sequence of add(i,x) and remove(i) operations on a RootishArrayStack.

Arrows denote elements being copied.

In this section, we discuss a data structure, the RootishArrayStack, that addresses
the problem of wasted space. The RootishArrayStack stores n elements using O(y/n)
arrays. In these arrays, at most O(y/n) array locations are unused at any time. All remaining
array locations are used to store data. Therefore, these data structures waste at most O(y/n)

space when storing n elements.
A RootishArrayStack stores its elements in a list of r arrays called blocks that are

numbered 0,1,...,r — 1. See Figure 2.5. Block b contains b + 1 elements. Therefore, all r

blocks contain a total of

14243+ +r=1(r+1)/2

elements. The above formula (allegedly discovered by the mathematician GauB} at the age

of 9) can be obtained as shown in Figure 2.6.

RootishArrayStack

List<T[]> blocks;
int n;

The elements of the list are laid out in the blocks as we might expect. The list
element with index 0 is stored in block 0, the elements with list indices 1 and 2 are stored in

block 1, the elements with list indices 3, 4, and 5 are stored in block 2, and so on. The main
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(LT

HEEE

r+1

Figure 2.6: The number of white squares is 1 4+ 24 3 4 --- + r. The number of shaded
squares is the same. Together the white and shaded squares make a rectangle consisting of

r(r + 1) squares.

problem we have to address is that of determining, given an index i, which block contains
i as well as the index corresponding to i within that block.

Determining the index of i within its block turns out to be easy. If index i is in
block b, then the number of elements in blocks 0,...,b — 1 is b(b + 1)/2. Therefore, i is
stored at location

j=i—bb+1)/2

within block b. Somewhat more challenging is the problem of determining the value of b.
The number of elements that have indices less than or equal to i is i + 1. On the other
hand, the number of elements in blocks 0,...,b is (b + 1)(b + 2)/2. Therefore, b is the
smallest integer such that

b+ 1)(b+2)/2>i+1 .

We can rewrite this equation as
b>43b—2i>0 .

The corresponding quadratic equation b? + 3b — 2i = 0 has two solutions: b = (—3 +
V9+8i)/2 and b = (=3 — /9 +8i)/2. The second solution makes no sense in our ap-
plication since it always gives a negative value. Therefore, we obtain the solution b =
(—3+4+/9 + 8i)/2. In general, this solution is not an integer, but going back to our inequal-
ity, we want the smallest integer b such that b > (=3 + /9 + 8i)/2. This is simply

b= [(—3 + M)/ﬂ
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RootishArrayStack
int 12b(int i) {

double db = (-3.0 + Math.sqrt(9 + 8%i)) / 2.0;
int b = (int)Math.ceil(db);

return b;

}

With this out of the way, the get(i) and set(i,x) methods are straightforward. We
first compute the appropriate block b and the appropriate index j within the block and

then perform the appropriate operation:

RootishArrayStack
T get(int i) {
if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();
int b = i2b(i);
int j = i - b*(b+1)/2;
return blocks.get(b) [j];
}
T set(int i, T x) {
if (1 <0 |l i>n - 1) throw new IndexOut0fBoundsException();
int b = i2b(i);
int j = i - b*x(b+1)/2;

T y = blocks.get(b) [j];
blocks.get(b) [j1 = x;
return y;

If we use any of the data structures in this chapter for representing the blocks list,

then get(i) and set(i,x) will each run in constant time.

The add(i, x) method will, by now, look familiar. We first check if our data structure
is full, by checking if the number of blocks r is such that r(r + 1)/2 = n and, if so, we call
grow() to add another block. With this done, we shift elements with indices i,...,n—1 to

the right by one position to make room for the new element with index i:
RootishArrayStack

void add(int i, T x) {
if (41 <0 |l i > n) throw new IndexOutOfBoundsException();
int r = blocks.size();
if (rx(r+1)/2 < n + 1) grow();
n++;
for (int j = n-1; j > i; j--)
set(j, get(j-1));
set(i, x);
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The grow() method does what we expect. It adds a new block:

RootishArrayStack

void grow() {
blocks.add(newArray(blocks.size()+1));
}

Ignoring the cost of the grow() operation, the cost of an add(i,x) operation is
dominated by the cost of shifting and is therefore O(1 +n — i), just like an ArrayStack.

The remove(i) operation is similar to add(i,x). It shifts the elements with indices
i+1,...,n left by one position and then, if there is more than one empty block, it calls the
shrink() method to remove all but one of the unused blocks:

RootishArrayStack

T remove(int i) {
if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();
T x = get(i);
for (int j = i; j < n-1; j++)
set(j, get(j+1));
n--;
int r = blocks.size();
if ((r-2)*(r-1)/2 >= n) shrink();
return x;

RootishArrayStack

void shrink() {
int r = blocks.size();
while (r > 0 && (r-2)*(r-1)/2 >=n) {
blocks.remove(blocks.size()-1);
r--;
+
}

Once again, ignoring the cost of the shrink() operation, the cost of a remove(i)

operation is dominated by the cost of shifting and is therefore O(n — 1).
2.6.1 Analysis of Growing and Shrinking

The above analysis of add(i,x) and remove(i) does not account for the cost of grow()
and shrink(). Note that, unlike the ArrayStack.resize() operation, grow() and shrink()
do not do any copying of data. They only allocate or free an array of size r. In some

environments, this takes only constant time, while in others, it may require ©(r)) time.
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We note that, immediately after a call to grow() or shrink(), the situation is clear.
The final block is completely empty and all other blocks are completely full. Another call to
grow() or shrink() will not happen until at least r—1 elements have been added or removed.
Therefore, even if grow() and shrink() take O(r) time, this cost can be amortized over at
least r — 1 add(i,x) or remove(i) operations, so that the amortized cost of grow() and

shrink() is O(1) per operation.
2.6.2 Space Usage

Next, we analyze the amount of extra space used by a RootishArrayStack. In particular,
we want to count any space used by a RootishArrayStack that is not an array element

currently used to hold a list element. We call all such space wasted space.

The remove(i) operation ensures that a RootishArrayStack never has more than 2
blocks that are not completely full. The number of blocks, r, used by a RootishArrayStack

that stores n elements therefore satisfies
(r—2)(r—1)<n
Again, using the quadratic equation on this gives
r < (3++1+4n)/2 = O(v/)

The last two blocks have sizes r and r — 1, so the space wasted by these two blocks is at
most 2r — 1 = O(y/n). If we store the blocks in (for example) an ArrayList, then the
amount of space wasted by the List that stores those r blocks is also O(r) = O(y/n). The
other space needed for storing n and other accounting information is O(1). Therefore, the

total amount of wasted space in a RootishArrayStack is O(y/n).

Next, we argue that this space usage is optimal for any data structure that starts
out empty and can support the addition of one item at a time. More precisely, we will show
that, at some point during the addition of n items, the data structure is wasting an amount

of space at least in y/n (though it may be only wasted for a moment).

Suppose we start with an empty data structure and we add n items one at a time.
At the end of this process, all n items are stored in the structure and they are distributed
among a collection of r memory blocks. If r > y/n, then the data structure must be using
r pointers (or references) to keep track of these r blocks, and this is wasted space. On the
other hand, if r < y/n then, by the pigeonhole principle, some block must have size at least
n/r > y/n. Consider the moment at which this block was first allocated. Immediately after

it was allocated, this block was empty, and was therefore wasting \/n space. Therefore, at
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some point in time during the insertion of n elements, the data structure was wasting /n

space.
2.6.3 Summary

The following theorem summarizes the performance of the RootishArrayStack data struc-

ture:

Theorem 2.5. A RootishArrayStack implements the List interface. Ignoring the cost of

calls to grow() and shrink(), a RootishArrayStack supports the operations
e get(i) and set(i,x) in O(1) time per operation; and
e add(i,x) and remove(i) in O(1 +n — i) time per operation.

Furthermore, beginning with an empty RootishArrayStack, any sequence of m add(i,x)
and remove(i) operations results in a total of O(m) time spent during all calls to grow()

and shrink().

The space (measured in words)® used by a RootishArrayStack that stores n elements

isn+ O(y/n).
2.6.4 Computing Square Roots

A reader who has had some exposure to models of computation may notice that the
RootishArrayStack, as described above, does not fit into the usual word-RAM model
of computation (Section 1.3) because it requires taking square roots. The square root op-
eration is generally not considered a basic operation and is therefore not usually part of the
word-RAM model.

In this section, we take time to show that the square root operation can be imple-
mented efficiently. In particular, we show that for any integer x € {0,...,n}, [\/x] can
be computed in constant-time, after O(y/n) preprocessing that creates two arrays of length
O(y/n). The following lemma shows that we can reduce the problem of computing the

square root of x to the square root of a related value x'.

Lemma 2.3. Let x > 1 and let ¥’ = x — a, where 0 < a < /x. Then V! > Vx—1.

VE—vx>ve-1.

3Recall Section 1.3 for a discussion of how memory is measured.

Proof. 1t suffices to show that
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Square both sides of this inequality to get

x—vVx>x—-2V/x+1

and gather terms to get
Ve>1

which is clearly true for any x > 1. O

Start by restricting the problem a little, and assume that 2% < x < 27! so that

|logx| = r, i.e., x is an integer having r + 1 bits in its binary representation. We can take
¥’ = x — (x mod 2U"/2)). Now, %’ satisfies the conditions of Lemma 2.3, so v/x — vx' < 1.

Furthermore, x’ has all of its lower-order |r/2] bits equal to 0, so there are only
2r+17Lr/2J S 4 21‘/2 S 4\/§

possible values of x’. This means that we can use an array, sqrttab, that stores the value

of [V/%'] for each possible value of x’. A little more precisely, we have
sqrttabli| = L iQLr/QJJ

In this way, sqrttabl[i] is within 2 of \/x for all x € {i2l"/2], ... (i + 1)2l"/2] — 1}. Stated
another way, the array entry s = sqrttab[x>>|r/2]] is either equal to |/x|, [v/x| — 1, or

| /x| — 2. From s we can determine the value of [y/x] by incrementing s until (s +1)% > x.
FastSqrt

int sqrt(int x, int r) {
int s = sqrtab[x>>r/2];
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

}

Now, this only works for x € {27,...,27"! — 1} and sqrttab is a special table that
only works for a particular value of r = |log x]. To overcome this, we could compute |logn|
different sqrttab arrays, one for each possible value of |logx]|. The sizes of these tables

form an exponential sequence whose largest value is at most 44/n, so the total size of all

tables is O(y/n).

However, it turns out that more than one sqrttab array is unnecessary; we only
need one sqrttab array for the value r = |logn]. Any value x with logx = r’ < r can be

upgraded by multiplying x by 2°~*" and using the equation

Vor—r'y = 9=r)/2 /x|
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Thequanﬁ@z2r*ﬂxisintherange{2rw..,2r*1—ﬁﬁ-a)wecanlookln)ﬁssquanenxmin
sqrttab. The following code implements this idea to compute [/x] for all non-negative

integers x in the range {0, ... ,230 1} using an array sqrttab of size 216
FastSqrt

int sqrt(int x) {
int rp = log(x);
int upgrade = ((r-rp)/2) * 2;
int xp = x << upgrade; // xp has r or r-1 bits
int s = sqrtabl[xp>>(r/2)] >> (upgrade/2);
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

Something we have taken for granted thus far is the question of how to compute
r" = |logx|. Again, this is a problem that can be solved with an array logtab of size
2t/2 In this case, the code is particularly simple, since |logx| is just the index of the
most significant 1 bit in the binary representation of x. This means that, for x > 27/2, we
can right-shift the bits of x by r/2 positions before using it as an index into logtab. The
following code does this using an array logtab of size 2!6 to compute |logx] for all x in

the range {1,...,232 — 1}

FastSqrt

int log(int x) {
if (x >= halfint)
return 16 + logtab[x>>>16];
return logtab[x];
}

Finally, for completeness, we include the following code that initializes logtab and

sqrttab:
FastSqrt

void inittabs() {
sqrtab = new int[1<<(x/2)];
logtab = new int[1<<(x/2)];
for (int d = 0; d < r/2; d++)
Arrays.fill(logtab, 1<<d, 2<<d, d);
int s = 1<<(x/4); // sqrt(2°(r/2))
for (int i = 0; i < 1<<(x/2); i++) {
if ((s+1)*(s+1) <= i << (r/2)) s++; // sqgrt increases
sqrtabl[i] = s;
}
}
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To summarize, the computations done by the i2b(i) method can be implemented
in constant time on the word-RAM using O(y/n) extra memory to store the sqrttab and
logtab arrays. These arrays can be rebuilt when n increases or decreases by a factor of 2,
and the cost of this rebuilding can be amortized over the number of add(i,x) and remove(i)
operations that caused the change in n in the same way that the cost of resize() is analyzed

in the ArrayStack implementation.
2.7 Discussion and Exercises

Most of the data structures described in this chapter are folklore. They can be found
in implementations dating back over 30 years. For example, implementations of stacks,
queues, and deques which generalize easily to the ArrayStack, ArrayQueue and ArrayDeque

structures described here are discussed by Knuth [36, Section 2.2.2].

Brodnik et al. [10] seem to have been the first to describe the RootishArrayStack
and prove a y/n lower-bound like that in Section 2.6.2. They also present a different struc-
ture that uses a more sophisticated choice of block sizes in order to avoid computing square
roots in the 12b(i) method. With their scheme, the block containing i is block [log(i+1)],
which is just the index of the leading 1 bit in the binary representation of i + 1. Some
computer architectures provide an instruction for computing the index of the leading 1-bit
in an integer.

A structure related to the RootishArrayStack is the 2-level tiered-vector of Goodrich
and Kloss [29]. This structure supports get(i,x) and set(i,x) in constant time and
add(i,x) and remove(i) in O(y/n) time. These running times are similar to what can
be achieved with the more careful implementation of a RootishArrayStack discussed in

Exercise 2.9.

Ezercise 2.1. The List method addA11(i, c) inserts all elements of the Collection c into
the list at position i. (The add(i,x) method is a special case where ¢ = {x}.) Explain
why, for the data structures in this chapter, it is not efficient to implement addA11(i, c) by

repeated calls to add(i,x). Design and implement a more efficient implementation.

Ezercise 2.2. Design and implement a RandomQueue. This is an implementation of the Queue
interface in which the remove() operation removes an element that is chosen uniformly at
random among all the elements in the queue. The add(x) and remove() operations in a

RandomQueue should take constant time.

Ezercise 2.3. Design and implement a Treque (triple-ended queue). This is a List imple-

mentation in which get(i) and set(i,x) run in constant time and add(i, x) and remove(i)
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run in time

O(1+ min{i,n—1i,[n/2 —1i|}) .

With this running time, modifications are fast if they are near either end or near the middle

of the list.

Ezercise 2.4. Implement a method rotate(r) that “rotates” a List so that list item i
becomes list item (i + r) mod n. When run on an ArrayDeque, or a DualArrayDeque,

rotate(r) should run in O(1 + min{r,n —r}).

Ezercise 2.5. Modify the ArrayDeque implementation so that the shifting done by add(i, x),

remove(i), and resize() is done using System.arraycopy(s, i,d, j,n).

Exercise 2.6. Modify the ArrayDeque implementation so that it does not use the % operator
(which is expensive on some systems). Instead, it should make use of the fact that, if
a.length is a power of 2, then k%a.length=Kk&(a.length — 1). (Here, & is the bitwise-and

operator.)

Ezercise 2.7. Design and implement a variant of ArrayDeque that does not do any modular
arithmetic at all. Instead, all the data sits in a consecutive block, in order, inside an
array. When the data overruns the beginning or the end of this array, a modified rebuild()
operation is performed. The amortized cost of all operations should be the same as in an

ArrayDeque.

Hint: Making this work is really all about how a rebuild() operation is performed.
You would like rebuild() to put the data structure into a state where the data cannot run

off either end until at least n/2 operations have been performed.

Test the performance of your implementation against the ArrayDeque. Optimize
your implementation (by using System.arraycopy(a,i,b,i,n)) and see if you can get it to
outperform the ArrayDeque implementation.

Ezercise 2.8. Design and implement a version of a RootishArrayStack that has only O(y/n)
wasted space, but that can perform add(i, x) and remove(i, x) operations in O(14+min{i,n—
i}) time.

Ezercise 2.9. Design and implement a version of a RootishArrayStack that has only
O(y/n) wasted space, but that can perform add(i,x) and remove(i,x) operations in O(1 +

min{y/n,n — i}) time. (For an idea on how to do this, see Section 3.3.)

Exercise 2.10. Design and implement a version of a RootishArrayStack that has only
O(y/n) wasted space, but that can perform add(i,x) and remove(i,x) operations in O(1 +

min{i,/n,n—1i}) time. (See Section 3.3 for ideas on how to achieve this.)
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Chapter 3

Linked Lists

In this chapter, we continue to study implementations of the List interface, this time using
pointer-based data structures rather than arrays. The structures in this chapter are made
up of nodes that contain the list items. The nodes are linked together into a sequence using
references (pointers). We first study singly-linked lists, which can implement Stack and
(FIFO) Queue operations in constant time per operation.

Linked lists have advantages and disadvantages relative to array-based implementa-
tions of the List interface. The primary disadvantage is that we lose the ability to access
any element using get(i) or set(i,x) in constant time. Instead, we have to walk through
the list, one element at a time, until we reach the ith element. The primary advantage is
that they are more dynamic: Given a reference to any list node u, we can delete u or insert

a node adjacent to u in constant time. This is true no matter where u is in the list.
3.1 SLList: A Singly-Linked List

An SLList (singly-linked list) is a sequence of Nodes. Each node u stores a data value
u.x and a reference u.next to the next node in the sequence. For the last node w in the

sequence, w.next = null

SLList
class Node {
T x;
Node next;

}

For efficiency, an SLList uses variables head and tail to keep track of the first and

last node in the sequence, as well as an integer n to keep track of the length of the sequence:
SLList

Node head;
Node tail;
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Figure 3.1: A sequence of Queue (add(x) and remove()) and Stack (push(x) and pop())

operations on an SLList.

int n; ‘

A sequence of Stack and Queue operations on an SLList is illustrated in Figure 3.1.

An SLList can efficiently implement the Stack operations push() and pop() by
adding and removing elements at the head of the sequence. The push() operation simply
creates a new node u with data value x, sets u.next to the old head of the list and makes u
the new head of the list. Finally, it increments n since the size of the SLList has increased

by one:

SLList

T push(T x) {
Node u = new Node();
u.x = X;
u.next = head;
head = u;
if (n == 0)
tail = u;
n++;

return x;

The pop() operation, after checking that the SLList is not empty, removes the head
by setting head = head.next and decrementing n. A special case occurs when the last

element is being removed, in which case tail is set to null:
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SLList

T popO) {
if (n == 0) return null;
T x = head.x;
head = head.next;
if (--n == 0) tail = null;
return Xx;

Clearly, both the push(x) and pop() operations run in O(1) time.
3.1.1 Queue Operations

An SLList can also efficiently implement the FIFO queue operations add(x) and remove().

Removals are done from the head of the list, and are identical to the pop() operation:
SLList

T remove() {
if (n == 0) return null;
T x = head.x;
head = head.next;
if (--n == 0) tail = null;
return x;

Additions, on the other hand, are done at the tail of the list. In most cases, this is
done by setting tail.next = u, where u is the newly created node that contains x. However,
a special case occurs when n = 0, in which case tail = head = null. In this case, both

tail and head are set to u.
SLList

boolean add(T x) {
Node u = new Node();
u.x = X;
if (n == 0) {
head = u;
} else {
tail.next = u;
}
tail = u;
n++;

return true;

Clearly, both add(x) and remove() take constant time.
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3.1.2 Summary
The following theorem summarizes the performance of an SLList:

Theorem 3.1. An SLList implements the Stack and (FIFO) Queue interfaces. The

push(x), pop(), add(x) and remove() operations run in O(1) time per operation.

An SLList comes very close to implementing the full set of Deque operations. The
only missing operation is removal from the tail of an SLList. Removing from the tail of
an SLList is difficult because it requires updating the value of tail so that it points to
the node w that precedes tail in the SLList; this is the node w such that w.next = tail.
Unfortunately, the only way to get to w is by traversing the SLList starting at head and
taking n — 2 steps.

3.2 DLList: A Doubly-Linked List

A DLList (doubly-linked list) is very similar to an SLList except that each node u in a
DLList has references to both the node u.next that follows it and the node u.prev that

precedes it.

DLList
class Node {
T x;
Node prev, next;

}

When implementing an SLList, we saw that there were always some special cases to
worry about. For example, removing the last element from an SLList or adding an element
to an empty SLList requires special care so that head and tail are correctly updated. In a
DLList, the number of these special cases increases considerably. Perhaps the cleanest way
to take care of all these special cases in a DLList is to introduce a dummy node. This is a
node that does not contain any data, but acts as a placeholder so that there are no special
nodes; every node has both a next and a prev, with dummy acting as the node that follows
the last node in the list and that precedes the first node in the list. In this way, the nodes
of the list are (doubly-)linked into a cycle, as illustrated in Figure 3.2.

DLList

int n;

Node dummy;

DLList() {
dummy = new Node();
dummy .next = dummy;
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Figure 3.2: A DLList containing a,b,c,de.

dummy .prev = dummy;
n = 0;

Finding the node with a particular index in a DLList is easy; we can either start
at the head of the list (dummy.next) and work forward, or start at the tail of the list
(dummy.prev) and work backward. This allows us to reach the ith node in O(1+ min{i,n—
i}) time:

DLList

Node getNode(int i) {
Node p = null;
if (i <n/ 2 {
p = dummy.next;
for (int j = 0; j < i; j++)
P = p.next;
} else {
p = dummy;
for (int j =n; j > i; j--)
P = p.prev;
}
return (p);

}

The get(i) and set(i,x) operations are now also easy. We first find the ith node
and then get or set its x value:
DLList

T get(int i) {
if (1 <0 ||l 1 >n - 1) throw new IndexOutOfBoundsException();
return getNode(i).x;

}

T set(int i, T x) {
if (1 <0 |l 1 >n - 1) throw new IndexOutOfBoundsException();
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Node u = getNode(i);

Ty =nu.x;
u.x = X;
return y;

The running time of these operations is dominated by the time it takes to find the

ith node, and is therefore O(1 4+ min{i,n — i}).
3.2.1 Adding and Removing

If we have a reference to a node w in a DLList and we want to insert a node u before w, then
this is just a matter of setting u.next = w, u.prev = w.prev, and then adjusting u.prev.next
and u.next.prev. Thanks to the dummy node, there is no need to worry about w.prev or
w.next not existing.

DLList

Node addBefore(Node w, T x) {
Node u = new Node();
X = X3
.prev = w.prev;

.next.prev = u;
.prev.next = u;
n++;

b

u
u
u.next = w;
u
u

return u;

Now, the list operation add(i,x) is trivial to implement. We find the ith node in
the DLList and insert a new node u that contains x just before it.
DLList

void add(int i, T x) {
if (i < 0 ||l 1 > n) throw new IndexOutOfBoundsException();
addBefore(getNode(i), x);

}

The only non-constant part of the running time of add(i,x) is the time it takes to
find the ith node (using getNode(i)). Thus, add(i,x) runs in O(1 4+ min{i,n — i}) time.

Removing a node w from a DLList is easy. We need only adjust pointers at w.next
and w.prev so that they skip over w. Again, the use of the dummy node eliminates the need

to consider any special cases:
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DLList

void remove (Node w) {
W.prev.next = w.next;
w.next.prev = w.prev;
n-—;

Now the remove(i) operation is trivial. We find the node with index i and remove

it:
DLList
T remove(int i) {
if (1 <0 ||l 1 >n - 1) throw new IndexOutOfBoundsException();
Node w = getNode(i);
remove (w) ;
return w.x;

Again, the only expensive part of this operation is finding the ith node using

getNode(i), so remove(i) runs in O(1 4+ min{i,n — i}) time.
3.2.2 Summary

The following theorem summarizes the performance of a DLList:

Theorem 3.2. A DLList implements the List interface. The get(i), set(i,x), add(i,x)

and remove(i) operations run in O(1 + min{i,n — i}) time per operation.

It is worth noting that, if we ignore the cost of the getNode(i) operation, then all
operations on a DLList take constant time. Thus, the only expensive part of operations on
a DLList is finding the relevant node. Once we have the relevant node, adding, removing,

or accessing the data at that node takes only constant time.

This is in sharp contrast to the array-based List implementations of Chapter 2; in
those implementations, the relevant array item can be found in constant time. However,
addition or removal requires shifting elements in the array and, in general, takes non-

constant time.

For this reason, linked list structures are well-suited to applications where references
to list nodes can be obtained through external means. An example of this is the Linked-
HashSet data structure found in the Java Collections Framework, in which a set of items

is stored in a doubly-linked list and the nodes of the doubly-linked list are stored in a hash
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table (discussed in Chapter 5). When elements are removed from a LinkedHashSet, the
hash table is used to find the relevant list node in constant time and then the list node is

deleted (also in constant time).
3.3 SEList: A Space-Efficient Linked List

One of the drawbacks of linked lists (besides the time it takes to access elements that are
deep within the list) is their space usage. Each node in a DLList requires an additional two
references to the next and previous nodes in the list. Two thirds of the fields in a Node are

dedicated to maintaining the list and only one third of the fields are for storing data!

An SEList (space-efficient list) reduces this wasted space using a simple idea: Rather
than store individual elements in a DLList, we store a block (array) containing several items.
More precisely, an SEList is parameterized by a block size b. Each individual node in an

SEList stores a block that can hold up to b + 1 elements.

It will turn out, for reasons that become clear later, that it will be helpful if we
can do Deque operations on each block. The data structure we choose for this is a BDeque
(bounded deque), derived from the ArrayDeque structure described in Section 2.4. The
BDeque differs from the ArrayDeque in one small way: When a new BDeque is created, the
size of the backing array a is fixed at b+ 1 and it never grows or shrinks. The important
property of a BDeque is that it allows for the addition or removal of elements at either the

front or back in constant time. This will be useful as elements are shifted from one block

to another.
SEList
class BDeque extends ArrayDeque<T> {
BDeque () {

super (SEList.this.type());
a = newArray(b+1);

}

void resize() { }

}

An SEList is then a doubly-linked list of blocks:

SEList
class Node {
BDeque d;
Node prev, next;
}
SEList
int n;
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Node dummy;

3.3.1 Space Requirements

An SEList places very tight restrictions on the number of elements in a block: Unless a
block is the last block, then that block contains at least b — 1 and at most b + 1 elements.

This means that, if an SEList contains n elements, then it has at most
n/(b—1)4+1=0(n/b)

blocks. The BDeque for each block contains an array of length b 4+ 1 but, for all blocks
except the last, at most a constant amount of space is wasted in this array. The remaining
memory used by a block is also constant. This means that the wasted space in an SEList
is only O(b+n/b). By choosing an appropriate value of b (ideally in ©(y/n)) we can make
the space-overhead of an SEList approach the (y/n) lower bound.!

3.3.2 Finding Elements

The first challenge we face with an SEList is finding the list item with a given index 1i.
Note that the location of an element consists of two parts: The node u that contains the
block that contains the element as well as the index j of the element within its block.

SEList

class Location {
Node u;
int j;
Location(Node u, int j) {
this.u = u;
this.j = j;
}
}

To find the block that contains a particular element, we proceed in the same way as
in a DLList. We either start at the front of the list and traverse in the forward direction or
at the back of the list and traverse backwards until we reach the node we want. The only
difference is that, each time we move from one node to the next, we skip over a whole block

of elements.
SEList

Location getLocation(int i) {
if (i <n/2) {

1See Section 2.6.2 for a proof of this lower bound.
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Node u = dummy.next;
while (i >= u.d.size()) {
i -= u.d.size();
u = u.next;
}
return new Location(u, i);
} else {
Node u = dummy;
int idx = n;
while (i < idx) {
u = u.prev;
idx -= u.d.size();

}

return new Location(u, i-idx);

Remember that, with the exception of at most one block, each block contains at
least b — 1 elements, so each step in our search gets us b — 1 elements closer to the element
we are looking for. If we are searching forward, this means we reach the node we want after
O(141/Db) steps. If we search backwards, we reach the node we want after O(1+ (n—1)/b)
steps. The algorithm takes the smaller of these two quantities depending on the value of i,

so the time to locate the item with index i is O(1 + min{i,n — i}/b).

Once we know how to locate the item with index i, the get(i) and set(i,x) oper-
ations translate into getting or setting a particular index in the correct block:
SEList

T get(int i) {
if (1 <0 ||l 1 >n - 1) throw new IndexOutOfBoundsException();
Location 1 = getLocation(i);
return 1l.u.d.get(1.j);

T set(int i, T x) {
if (1 <0 ||l 1 >n - 1) throw new IndexOutOfBoundsException();
Location 1 = getLocation(i);
Ty=1u.d.get(1.j);
l.u.d.set(l.j,x);
return y;

These operations are dominated by the time it takes to locate the item, so they also

run in O(1 + min{i,n — i}/b) time.
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3.3.3 Adding an Element

Things start to get complicated when adding elements to an SEList. Before considering
the general case, we consider the easier operation, add(x), in which x is added to the end
of the list. If the last block is full (or does not exist because there are no blocks yet), then
we first allocate a new block and append it to the list of blocks. Now that we are sure that

the last block exists and is not full, we append x to the last block.
SEList

boolean add(T x) {
Node last = dummy.prev;
if (last == dummy || last.d.size() == b+1) {
last = addBefore(dummy) ;
+
last.d.add(x);
n++;

return true;

Things get more complicated when we add to the interior of the list using add(i, x).
We first locate i to get the node u whose block contains the ith list item. The problem is
that we want to insert x into u’s block, but we have to be prepared for the case where u’s
block already contains b + 1 elements, so that it is full and there is no room for x.

Let ug,uq,us, ... denote u, u.next, u.next.next, and so on. We explore ug,uy,us,...
looking for a node that can provide space for x. Three cases can occur during our space

exploration (see Figure 3.3):

1. We quickly (in r + 1 < b steps) find a node u, whose block is not full. In this case,
we perform r shifts of an element from one block into the next, so that the free space

in u, becomes a free space in ug. We can then insert x into ug’s block.

2. We quickly (in 7 + 1 < b steps) run off the end of the list of blocks. In this case, we
add a new empty block to the end of the list of blocks and proceed as in the first case.

3. After b steps we do not find any block that is not full. In this case, ug,...,up—1 is a
sequence of b blocks that each contain b + 1 elements. We insert a new block uy at
the end of this sequence and spread the original b(b + 1) elements so that each block
of ug, ..., u, contains exactly b elements. Now ug’s block contains only b elements so

it has room for us to insert x.
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Figure 3.3: The three cases that occur during the addition of an item x in the interior of

an SEList. (This SEList has block size b = 3.)

SEList
void add(int i, T x) {
if (1 <0 || i > n) throw new IndexOutOfBoundsException() ;
if (4 == n) {
add (x) ;
return;
}
Location 1 = getLocation(i);
Node u = 1.u;
int r = 0;
while (r < b && u '= dummy && u.d.size() == b+1) {
u = u.next;
r++;
}
if (r == b) { // found b blocks each with b+l elements
spread(l.u);
u=1.u;
}
if (u == dummy) { // ran off the end of the list - add new node
u = addBefore(u);
}
while (u !'= 1.u) { // work backwards, shifting an element at each step
u.d.add(0, u.prev.d.remove(u.prev.d.size()-1));
u = u.prev;
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}
u.d.add(1.j, x);
n++;

3

The running time of the add(i,x) operation depends on which of the three cases
above occurs. Cases 1 and 2 involve examining and shifting elements through at most b
blocks and take O(b) time. Case 3 involves calling the spread(u) method, which moves
b(b + 1) elements and takes O(b?) time. If we ignore the cost of Case 3 (which we will
account for later with amortization) this means that the total running time to locate i and

perform the insertion of x is O(b + min{i,n — i}/b).
3.3.4 Removing an Element

Removing an element, using the remove(i) method from an SEList is similar to adding an
element. We first locate the node u that contains the element with index i. Now, we have
to be prepared for the case where we cannot remove an element from u without causing u’s

block to have size less than b — 1, which is not allowed.

Again, let ug,ui,uo, ... denote u, u.next, u.next.next, We examine ug, ug, ug, ... in
order looking for a node from which we can borrow an element to make the size of ugy’s

block larger than b — 1. There are three cases to consider (see Figure 3.4):

1. We quickly (in 7 +1 < b steps) find a node whose block contains more than b — 1
elements. In this case, we perform r shifts of an element from one block into the
previous, so that the extra element in u, becomes an extra element in ug. We can

then remove the appropriate element from ug’s block.

2. We quickly (in 7 4+ 1 < b steps) run off the end of the list of blocks. In this case, u,
is the last block, and there is no requirement that u,’s block contain at least b — 1
elements. Therefore, we proceed as above, borrowing an element from u, to make an

extra element in ug. If this causes u,’s block to become empty, then we remove it.

3. After b steps we do not find any block containing more than b — 1 elements. In this
case, ug, . . . , Up_1 i8 a sequence of b blocks that each contain b—1 elements. We gather
these b(b — 1) elements into ug, ..., up,—2 so that each of these b — 1 blocks contains
exactly b elements and we remove uy,_1, which is now empty. Now ug’s block contains

b elements so we can remove the appropriate element from it.
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Figure 3.4: The three cases that occur during the removal of an item x in the interior of an

SEList. (This SEList has block size b = 3.)

SEList
T remove(int i) {

if (1 <0 |l i>n - 1) throw new IndexOutOfBoundsException();

Location 1 = getLocation(i);

Ty=1lu.d.get(l.j);

Node u = 1.u;

int r = 0;

while (r < b && u '= dummy && u.d.size() == b-1) {
u = u.next;
r++;

}

if (r == b) { // found b blocks each with b-1 elements
gather(l.u);

}

u=1.u;

u.d.remove(l.j);

while (u.d.size() < b-1 && u.next != dummy) {
u.d.add(u.next.d.remove(0));
u = u.next;

}

if (u.d.isEmpty()) remove(u);

n==3

return y;
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| |

Like the add(i,x) operation, the running time of the remove(i) operation is O(b +

min{i,n — i}/b) if we ignore the cost of the gather(u) method that occurs in Case 3
3.3.5 Amortized Analysis of Spreading and Gathering

Next, we consider the cost of the gather(u) and spread(u) methods that may be executed
by the add(i,x) and remove(i) methods. For completeness, here they are:

SEList

void spread(Node u) {
Node w = u;
for (int j = 0; j < b; j++) {
W = w.next;
}
w = addBefore(w);
while (w !'= u) {
while (w.d.size() < b)
w.d.add(0,w.prev.d.remove(w.prev.d.size()-1));
W = W.prev;
}
}

SEList

void gather (Node u) {

Node w = u;

for (int j = 0; j < b-1; j++) {
while (w.d.size() < b)

w.d.add(w.next.d.remove(0));

W = w.next;

}

remove (w) ;

}

The running time of each of these methods is dominated by the two nested loops.
Both the inner loop and outer loop execute at most b + 1 times, so the total running time
of each of these methods is O((b+ 1)?) = O(b?). However, the following lemma shows that

these methods execute on at most one out of every b calls to add(i,x) or remove(i).

Lemma 3.1. If an empty SEList is created and any sequence of m > 1 calls to add(i,x)
and remove(i) are performed, then the total time spent during all calls to spread() and

gather() is O(bm).
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Proof. We will use the potential method of amortized analysis. We say that a node u is
fragile if u’s block does not contain b elements (so that u is either the last node, or contains
b— 1 or b+ 1 elements). Any node whose block contains b elements is rugged. Define the
potential of an SEList as the number of fragile nodes it contains. We will consider only
the add(i,x) operation and its relation to the number of calls to spread(u). The analysis
of remove(i) and gather(u) is identical.

Notice that, if Case 1 occurs during the add(i,x) method, then only one node, u,
has the size of its block changed. Therefore, at most one node, namely u,, goes from being
rugged to being fragile. If Case 2 occurs, then a new node is created, and this node is
fragile, but no other node changes sizes, so the number of fragile nodes increases by one.
Thus, in either Case 1 or Case 2 the potential of the SEList increases by at most 1.

Finally, if Case 3 occurs, it is because ugp,...,u,_1 are all fragile nodes. Then
spread(ug) is called and these b fragile nodes are replaced with b+ 1 rugged nodes. Finally,
x is added to ug’s block, making ug fragile. In total the potential decreases by b — 1.

In summary, the potential starts at 0 (there are no nodes in the list). Each time
Case 1 or Case 2 occurs, the potential increases by at most 1. Each time Case 3 occurs, the
potential decreases by b — 1. The potential (which counts the number of fragile nodes) is
never less than 0. We conclude that, for every occurrence of Case 3, there are at least b — 1
occurrences of Case 1 or Case 2. Thus, for every call to spread(u) there are at least b calls

to add(i,x). This completes the proof. O
3.3.6 Summary
The following theorem summarizes the performance of the SEList data structure:
Theorem 3.3. An SEList implements the List interface. Ignoring the cost of calls to
spread(u) and gather(u), an SEList with block size b supports the operations

e get(i) and set(i,x) in O(1 + min{i,n — i}/b) time per operation; and

e add(i,x) and remove(i) in O(b + min{i,n — i}/b) time per operation.

Furthermore, beginning with an empty SEList, any sequence of m add(i,x) and remove(i)

operations results in a total of O(bm) time spent during all calls to spread(u) and gather(u).

The space (measured in words)? used by an SEList that stores n elements is n +
O(b+n/b).

2Recall Section 1.3 for a discussion of how memory is measured.
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The SEList is a tradeoff between an ArrayList and a DLList where the relative
mix of these two structures depends on the block size b. At the extreme b = 2, each SEList
node stores at most 3 values, which is really not much different than a DLList. At the other
extreme, b > n, all the elements are stored in a single array, just like in an ArrayList. In
between these two extremes lies a tradeoff between the time it takes to add or remove a list

item and the time it takes to locate a particular list item.
3.4 Discussion and Exercises

Both singly-linked and doubly-linked lists are folklore, having been used in programs for
over 40 years. They are discussed, for example, by Knuth [36, Sections 2.2.3-2.2.5]. Even

the SEList data structure seems to be a well-known data structures exercise.

Ezercise 3.1. Why is it not possible, in an SLList to use a dummy node to avoid all the

special cases that occur in the operations push(x), pop(), add(x), and remove()?

Ezercise 3.2. Describe and implement the List operations get(i), set(i,x), add(i,x) and

remove(i) on an SLList. Each of these operations should run in O(1 + i) time.
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Chapter 4

Skiplists

In this chapter, we discuss a beautiful data structure: the skiplist, which has a variety of
applications. Using a skiplist we can implement a List that is fast for all the operations
get(i), set(i,x), add(i,x), and remove(i). We can also implement an SSet in which all

operations run in O(logn) expected time.

Skiplists rely on randomization for their efficiency. In particular, a skiplist uses
random coin tosses when an element is inserted to determine the height of that element.
The performance of skiplists is expressed in terms of expected running times and lengths of
paths. This expectation is taken over the random coin tosses used by the skiplist. In the
implementation, the random coin tosses used by a skiplist are simulated using a pseudo-

random number (or bit) generator.
4.1 The Basic Structure

Conceptually, a skiplist is a sequence of singly-linked lists Ly, ..., Lp, where each L, contains
a subset of the items in L,_;. We start with the input list Ly that contains n items and
construct Ly from Ly, Lo from Lq, and so on. The items in L, are obtained by tossing a
coin for each element, x, in L,_; and including x in L, if the coin comes up heads. This
process ends when we create a list L, that is empty. An example of a skiplist is shown in
Figure 4.1.

For an element, x, in a skiplist, we call the height of x the largest value r such that
x appears in L,. Thus, for example, elements that only appear in Ly have height 0. Notice
that the height of x corresponds to the following experiment: Toss a coin repeatedly until
the first time it comes up tails. How many times did it come up heads? The answer, not
surprisingly, is that the expected height of a node is 1. (We expect to toss the coin twice
before getting tails, but we don’t count the last toss.) The height of a skiplist is the height

of its tallest node.

61



4. Skiplists 4.1. The Basic Structure

L5 L4 °

L4 L4 °

L3 L4 [ °

Lo ° . . °

L1 L4 [ . . . °

P S I S TN P RS S Y L ST E ST E
sentinel

Figure 4.1: A skiplist containing seven elements.
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Figure 4.2: The search path for the node containing 4 in a skiplist.

At the head of every list is a special node, called the sentinel, that acts as a dummy
node for the list. The key property of skiplists is that there is a short path, called the search
path, from the sentinel in Ly to every node in Lg. Remembering how to construct a search
path for a node, u, is easy (see Figure 4.2) : Start at the top left corner of your skiplist (the
sentinel in Ly) and always go right unless that would overshoot u, in which case you should

take a step down into the list below.

More precisely, to construct the search path for the node u in Ly we start at the
sentinel, w, in L. Next, we examine w.next. If w.next contains an item that appears before
u in Lo, then we set w = w.next. Otherwise, we move down and continue the search at the
occurrence of w in the list Ly_1. We continue this way until we reach the predecessor of u
in L.

The following result, which we will prove in Section 4.4, shows that the search path

is quite short:

Lemma 4.1. The expected length of the search path for any mode, u, in Ly is at most
2logn+ O(1) = O(logn).
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A space-efficient way to implement a Skiplist is to define a Node, u, as consisting
of a data value, x, and an array, next, of pointers, where u.next[i] points to u’s successor
in the list L;. In this way, the data, x, in a node is referenced only once, even though x

may appear in several lists.

SkiplistSSet

class Node<T> {
T x;
Node<T>[] next;
Node(T ix, int h) {
X = ix;
next = (Node<T>[])Array.newInstance(Node.class, h+l);
}
int height() {
return next.length - 1;
}
}

The next two sections of this chapter discuss two different applications of skiplists.
In each of these applications, Ly stores the main structure (a list of elements or a sorted
set of elements). The primary difference between these structures is in how a search path
is navigated; in particular, they differ in how they decide if a search path should go down

into L,_; or go right within L,.
4.2 SkiplistSSet: An Efficient SSet Implementation

A SkiplistSSet uses a skiplist structure to implement the SSet interface. When used this
way, the list Ly stores the elements of the SSet in sorted order. The find(x) method works
by following the search path for the smallest value y such that y > x:

SkiplistSSet
Node<T> findPredNode(T x) {
Node<T> u = sentinel;
int r = h;
while (r >= 0) {
while (u.next[r] != null && compare(u.next[r].x,x) < 0)
u = u.next[r]; // go right in list r
r--; // go down into list r-1
}
return u;

}
T find(T x) {
Node<T> u = findPredNode(x) ;
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return u.next[0] == null ? null : u.next[0].x;

}

Following the search path for y is easy: when situated at some node, u, in L., we
look right to u.next[r].x. If x > u.next[r|.x, then we take a step to the right in L, otherwise
we move down into L,_;. Each step (right or down) in this search takes only constant time

so, by Lemma 4.1, the expected running time of find(x) is O(logn).
Before we can add an element to a SkipListSet, we need a method to simulate
tossing coins to determine the height, k, of a new node. We do this by picking a random

integer, z, and counting the number of trailing 1s in the binary representation of z:!

SkiplistSSet
int pickHeight() {
int z = rand.nextInt();
int k = 0;
int m = 1;
while ((z & m) != 0) {
k++;
m <<= 1;
}
return k;
}

To implement the add(x) method in a SkiplistSSet we search for x and then splice
x into a few lists Ly,. . .,Lx, where k is selected using the pickHeight() method. The easiest
way to do this is to use an array, stack, that keeps track of the nodes at which the search
path goes down from some list L, into L,_;. More precisely, stack|r] is the node in L,
where the search path proceeded down into L,._1. The nodes that we modify to insert x are
precisely the nodes stack[0],...,stack[k]. The following code implements this algorithm
for add(x):
SkiplistSSet

boolean add(T x) {
Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {
while (u.next[r] != null && (comp = compare(u.next[r].x,x)) < 0)

!This method does not exactly replicate the coin-tossing experiment since the value of k will always be
less than the number of bits in an int. However, this will have negligible impact unless the number of
elements in the structure is much greater than 232 = 4294967296.
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Figure 4.3: Adding the node containing 3.5 to a skiplist. The nodes stored in stack are
highlighted.

u = u.next[r];
if (u.next[r] != null && comp == 0) return false;
stack[r--] = u; // going down, store u
}
Node<T> w = new Node<T>(x, pickHeight());
while (h < w.height())

stack[++h] = sentinel; // increasing height of skiplist
for (int i = 0; i < w.next.length; i++) {

w.next[i] = stackl[i] .next[i];

stack[i] .next[i] = w;
}
n++;

b

return true;

Removing an element, x, is done in a similar way, except that there is no need for
stack to keep track of the search path. The removal can be done as we are following the
search path. We search for x and each time the search moves downward from a node u, we

check if u.next.x = x and if so, we splice u out of the list:
SkiplistSSet

boolean remove(T x) {
boolean removed = false;
Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {
while (u.next[r] != null && (comp = compare(u.next[r].x, x)) < 0) {
u = u.next[r];
}
if (u.next[r] != null && comp == 0) {
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Figure 4.4: Removing the node containing 3 from a skiplist.

removed = true;
u.next[r] = u.next[r] .next[r];
if (u == sentinel && u.next[r] == null)
h--; // skiplist height has gone down
}
r=-=;

if (removed) n--;
return removed;

}

4.2.1 Summary

The following theorem summarizes the performance of skiplists when used to implement

sorted sets:

Theorem 4.1. A SkiplistSSet implements the SSet interface. A SkiplistSSet supports

the operations add(x), remove(x), and £ind(x) in O(logn) expected time per operation.

4.3 SkiplistList: An Efficient Random-Access List Implementation

A SkiplistList implements the List interface on top of a skiplist structure. In a Skip-
listList, Lo contains the elements of the list in the order they appear in the list. Just like

with a SkiplistSSet, elements can be added, removed, and accessed in O(logn) time.

For this to be possible, we need a way to follow the search path for the ith element
in Lyg. The easiest way to do this is to define the notion of the length of an edge in some
list, Ly. We define the length of every edge in Ly as 1. The length of an edge, e, in Ly,
r > 0, is defined as the sum of the lengths of the edges below e in L,_;. Equivalently, the

length of e is the number of edges in Ly below e. See Figure 4.5 for an example of a skiplist
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Figure 4.5: The lengths of the edges in a skiplist.

with the lengths of its edges shown. Since the edges of skiplists are stored in arrays, the

lengths can be stored the same way:

SkiplistList
class Node {
T x;
Node[] next;
int[] length;
Node(T ix, int h) {
X = ix;
next = (Node[])Array.newInstance(Node.class, h+1);
length = new int[h+1];
}
int height() {
return next.length - 1;
}
}

The useful property of this definition of length is that, if we are currently at a node
that is at position j in Lg and we follow an edge of length ¢, then we move to a node whose
position, in Lg, is j +¢. In this way, while following a search path, we can keep track of the
position, j, of the current node in Ly. When at a node, u, in L., we go right if j plus the

length of the edge u.next[r] is less than i, otherwise we go down into Ly_;.

SkiplistList
Node findPred(int i) {
Node u = sentinel;
int r = h;
int j = -1; // the index of the current node in list O

while (r >= 0) {
while (u.next[r] != null &% j + u.length[r] < i) {
j += u.lengthl[r];
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Figure 4.6: Adding an element to a SkiplistList.

u = u.next[r];
}
r-—-;
}
return u;
}
SkiplistList
T get(int i) {
if (1 < 0 || 1 > n-1) throw new IndexOutOfBoundsException();
return findPred(i) .next[0].x;
}
T set(int i, T x) {
if (1 < 0 ||l 1 > n-1) throw new IndexOutOfBoundsException();
Node u = findPred(i) .next[0];
Ty =nu.x;
u.X = X;
return y;
}

Since the hardest part of the operations get(i) and set(i,x) is finding the ith node
in Ly, these operations run in O(logn) time.

Adding an element to a SkiplistList at a position, i, is fairly straightforward.
Unlike in a SkiplistSSet, we are sure that a new node will actually be added, so we can
do the addition at the same time as we search for the new node’s location. We first pick
the height, k, of the newly inserted node, w, and then follow the search path for i. Anytime
the search path moves down from L, with r < k, we splice w into L,. The only extra care

needed is to ensure that the lengths of edges are updated properly. See Figure 4.6.
Note that, each time the search path goes down at a node, u, in L, the length of
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Figure 4.7: Updating the lengths of edges while splicing a node w into a skiplist.

the edge u.next[r| increases by one, since we are adding an element below that edge at
position i. Splicing the node w between two nodes, u and z, works as shown in Figure 4.7.
While following the search path we are already keeping track of the position, j, of u in L.
Therefore, we know that the length of the edge from u to wis 1 — j. We can also deduce
the length of the edge from w to z from the length, £, of the edge from u to z. Therefore,
we can splice in w and update the lengths of the edges in constant time.

This sounds more complicated than it actually is and the code is actually quite
simple:

SkiplistList

void add(int i, T x) {
if (i < 0 || 1 > n) throw new IndexOutOfBoundsException();
Node w = new Node(x, pickHeight());
if (w.height() > h)
h = w.height();
add(i, w);

SkiplistList

Node add(int i, Node w) {
Node u = sentinel;
int k = w.heightQ);
int r = h;
int j = -1; // index of u
while (r >= 0) {
while (u.next[r] != null &% j+u.length[r] < i) {
j += u.lengthlr];
u = u.next[r];
+
u.length[r]++; // to account for new node in list O
if (r <= k) {
w.next[r] = u.nextl[r];
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Figure 4.8: Removing an element from a SkiplistList.
u.next[r] = w;
w.length[r] = u.lengthl[r] - (1 - j);
u.length[r] = i - j;
}
r__’
}
n++;
return u;
}

By now, the implementation of the remove(i) operation in a SkiplistList should
be obvious. We follow the search path for the node at position i. Each time the search path
takes a step down from a node, u, at level r we decrement the length of the edge leaving u
at that level. We also check if u.next|r] is the element of rank i and, if so, splice it out of

the list at that level. An example is shown in Figure 4.8.

SkiplistList
T remove(int i) {
if (1 < 0 || 1 > n-1) throw new IndexOutOfBoundsException();
T x = null;
Node u = sentinel;
int r = h;
int j = -1; // index of node u

while (r >= 0) {

while (u.next[r] != null &% j+u.length[r] < i) {
j += u.lengthlr];
u = u.next[r];

+

u.lengthl[r]l--; // for the node we are removing

if (j + u.lengthl[r] + 1 == i &% u.next[r] != null) {
x = u.next[r].x;
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u.length[r] += u.next[r].lengthl[r];
u.next[r] = u.next[r].nextl[r];
if (u == sentinel && u.next[r] == null)

n--;
return x;

}

4.3.1 Summary

The following theorem summarizes the performance of the SkiplistList data structure:

Theorem 4.2. A SkiplistList implements the List interface. A SkiplistList supports
the operations get(i), set(i,x), add(i,x), and remove(i) in O(logn) expected time per

operation.

4.4 Analysis of Skiplists

In this section, we analyze the expected height, size, and length of the search path in a
skiplist. This section requires a background in basic probability. Several proofs are based

on the following basic observation about coin tosses.

Lemma 4.2. Let T be the number of times a fair coin is tossed up to and including the

first time the coin comes up heads. Then E[T] = 2.

Proof. Suppose we stop tossing the coin the first time it comes up heads. Define the

indicator variable

I 0 if the coin is tossed less than 7 times
‘ 1 if the coin is tossed 7 or more times

Note that I; = 1 if and only if the first ¢ — 1 coin tosses are tails, so E[I;] = Pr{l; = 1} =

1/2071. Observe that T, the total number of coin tosses, can be written as T = > oo, I;.
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Therefore,

E[T]=E

S

i=1

=Y _E[L]
i=1

_ i 1/2i—1
i=1

=141/241/4+1/8+--
9. O

The next two lemmata tell us that skiplists have linear size:

Lemma 4.3. The expected number of nodes in a skiplist containing n elements, not includ-

ing occurrences of the sentinel, is 2n.

Proof. The probability that any particular element, x, is included in list L, is 1/2%, so the

expected number of nodes in L, is n/2". Therefore, the total number of nodes in all lists is

> n/2=n(1+1/2+1/4+1/8+---)=2n . O
r=0

Lemma 4.4. The expected height of a skiplist containing n elements is at most logn + 2.

Proof. For each r € {1,2,3,...,00}, define the indicator random variable

I - 0 if L, is empty
- 1 if L, is non-empty

The height h of the skiplist is then given by

o0
h:ZIr .
=1

Note that I, is never more than the length, |L.|, of Ly, so

E[l;] < E[|L.|] =n/2" .
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Therefore, we have

Eh] =E ZI]
r=1

= EIL]
r=1
logn| (9]

= ElLl+ Y EL]
r=1 r=|logn|+1
|logn]| 0o

<> 1+ > o/
r=1 r=|logn|+1

o
< logn—i—ZI/Qr
r=0
=logn+2 . O

Lemma 4.5. The expected number of nodes in a skiplist containing n elements, including

all occurrences of the sentinel, is 2n + O(logn).

Proof. By Lemma 4.3, the expected number of nodes, not including the sentinel, is 2n.
The number of occurrences of the sentinel is equal to the height, h, of the skiplist so,
by Lemma 4.4 the expected number of occurrences of the sentinel is at most logn 4+ 2 =
O(logn). O

Lemma 4.6. The expected length of a search path in a skiplist is at most 2logn + O(1).

Proof. The easiest way to see this is to consider the reverse search path for a node, x. This
path starts at the predecessor of x in Ly. At any point in time, if the path can go up a
level, then it does. If it cannot go up a level then it goes left. Observe that the reverse

search path for x is identical to the search path for x, except that it is reversed.

The number of nodes that the reverse search path visits at a particular level, r, is
related to the following experiment: Toss a coin. If the coin comes up heads then go up
and stop, otherwise go left and repeat the experiment. The number of coin tosses before
the heads then represents the number of steps to the left that a reverse search path takes
at a particular level.? Lemma 4.2 tells us that the expected number of coin tosses before
the first heads is 1.

2Note that this might overcount the number of steps to the left, since the experiment should end either
at the first heads or when the search path reaches the sentinel, whichever comes first. This is not a problem

since the lemma is only stating an upper bound.
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Let Sy denote the number of steps the forward search path takes at level r that go
to the right. We have just argued that E[S;] < 1. Furthermore, Sy < |L|, since we can’t
take more steps in L, than the length of L., so

E[Sy] < E[|L¢|]] =n/2" .

We can now finish as in the proof of Lemma 4.4. Let S be the length of the search path for
some node, u, in a skiplist, and let h be the height of the skiplist. Then

o0
h+ ) S
r=0

= E[h] + i E[Sy]
r=0

E[S] = E

|logn| ()
=ER]+ Y E[S:]+ Y E[S]
=0 r=|logn]|+1
|logn]| 00
<ER/+ > 1+ > /2
r=0 r=|logn|+1
[logn] 00
<EMR/+ ) 1+) 1/2°
r=0 r=0
[logn] o0
<ER]+ ) 1+) 1/2F
r=0 r=0

< E[h] +logn+3
<2logn+5 . O

The following theorem summarizes the results in this section:

Theorem 4.3. A skiplist containing n elements has expected size O(n) and the expected

length of the search path for any particular element is at most 2logn + O(1).

4.5 Discussion and Exercises

Skiplists were introduced by Pugh [47] who also presented a number of applications of
skiplists [46]. Since then they have been studied extensively. Several researchers have done
very precise analysis of the expected length and variance in length of the search path for
the ith element in a skiplist [35, 34, 44]. Deterministic versions [39], biased versions [6, 21],
and self-adjusting versions [9] of skiplists have all been developed. Skiplist implementations

have been written for various languages and frameworks and have seen use in open-source
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database systems [54, 48]. A variant of skiplists is used in the HP-UX operating system
kernel’s process management structures [33]. Skiplists are even part of the Java 1.6 API
[41].

Ezercise 4.1. Show that, during an add(x) or a remove(x) operation, the expected number

of pointers in the structure that get changed is constant.

Ezxercise 4.2. Suppose that, instead of promoting an element from L; i into L; based on
a coin toss, we promote it with some probability p, 0 < p < 1. Show that the expected
length of the search path in this case is at most (1/p)log;/,n+ O(1). What is the value of
p that minimizes this expression? What is the expected height of the skiplist? What is the

expected number of nodes in the skiplist?

Ezercise 4.3. Design and implement a find(x) method for SkiplistSSet that avoids locally-
redundant comparisons; these are comparisons that have already been done and occur be-
cause u.next|r] = unext[r — 1]. Analyze the expected number of comparisons done by

your modified £ind(x) method.

Ezercise 4.4. Design and implement a version of a skiplist that implements the SSet inter-
face, but also allows fast access to elements by rank. That is, it also supports the function
get(i), which returns the element whose rank is i in O(logn) expected time. (The rank of

an element x in an SSet is the number of elements in the SSet that are less than x.)

Ezercise 4.5. Using the ideas from the space-efficient linked-list, SEList, design and imple-
ment a space-efficient SSet, SESSet. Do this by storing the data, in order, in an SEList
and then storing the blocks of this SEList in an SSet. If the original SSet implementation
uses O(n) space to store n elements, then the SESSet will use enough space for n elements

plus O(n/b + b) wasted space.

Ezercise 4.6. Using an SSet as your underlying structure, design and implement an appli-
cation that reads a (large) text file and allow you to search, interactively, for any substring

contained in the text.

Hint 1: Every substring is a prefix of some suffix, so it suffices to store all suffixes of the
text file.

Hint 2: Any suffix can be represented compactly as a single integer indicating where the
suffix begins in the text.

Test your application on some large texts like some of the books available at Project Guten-

berg [1].
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Chapter 5

Hash Tables

Hash tables are an efficient method of storing a small number, n, of integers from a large
range U = {0,...,2" — 1}. The term hash table includes a broad range of data structures.
This chapter focuses on one of the most common implementations of hash tables, namely
hashing with chaining.

Very often hash tables store data that are not integers. In this case, an integer hash
code is associated with each data item and this hash code is used in the hash table. The
second part of this chapter discusses how such hash codes are generated.

Some of the methods used in this chapter require random choices of integers in
some specific range. In the code samples, some of these “random” integers are hard-coded
constants. These constants were obtained using random bits generated from atmospheric

noise.
5.1 ChainedHashTable: Hashing with Chaining

A ChainedHashTable data structure uses hashing with chaining to store data as an array,

t, of lists. An integer, n, keeps track of the total number of items in all lists:

ChainedHashTable
List<T>[] t;
int n;
The hash value of a data item x, denoted hash(x) is a value in the range {0, ..., t.length —

1}. All items with hash value i are stored in the list at t[i]. To ensure that lists don’t get

too long, we maintain the invariant
n < t.length

so that the average number of elements stored in one of these lists is n/t.length < 1.
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To add an element, x, to the hash table, we first check if the length of t needs to be
increased and, if so, we grow t. With this out of the way we hash x to get an integer, i, in

the range {0,...,t.length — 1} and we append x to the list t[i]:
ChainedHashTable

boolean add(T x) {
if (find(x) '= null) return false;
if (n+1 > t.length) resize();
t [hash(x)].add(x);
n++;

return true;

Growing the table, if necessary, involves doubling the length of t and reinserting all ele-
ments into the new table. This is exactly the same strategy used in the implementation
of ArrayStack and the same result applies: The cost of growing is only constant when
amortized over a sequence of insertions (see Lemma 2.1 on page 19).

Besides growing, the only other work done when adding x to a ChainedHashTable
involves appending x to the list t[hash(x)]. For any of the list implementations described
in Chapters 2 or 3, this takes only constant time.

To remove an element x from the hash table we iterate over the list t|[hash(x)]| until

we find x so that we can remove it:

ChainedHashTable
T remove(T x) {
Iterator<T> it = t[hash(x)].iterator();
while (it.hasNext()) {
Ty = it.next(Q);
if (y.equals(x)) {
it.remove();
n--;
return y;
+
}

return null;

This takes O(npasn(x))time, where n; denotes the length of the list stored at t[i].

Searching for the element x in a hash table is similar. We perform a linear search

on the list t[hash(x)]:
ChainedHashTable

T find(Object x) {
for (T y : tlhash(x)])
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if (y.equals(x))
return y;
return null;

}

Again, this takes time proportional to the length of the list t[hash(x)].

The performance of a hash table depends critically on the choice of the hash function.
A good hash function will spread the elements evenly among the t.length lists, so that the
expected size of the list t[hash(x)] is O(n/t.length) = O(1). On the other hand, a bad
hash function will hash all values (including x) to the same table location, in which case the

size of the list t[hash(x)] will be n. In the next section we describe a good hash function.
5.1.1 Muiltiplicative Hashing

Multiplicative hashing is an efficient method of generating hash values based on modular
arithmetic (discussed in Section 2.3) and integer division. It uses the div operator, which
calculates the integral part of a quotient, while discarding the remainder. Formally, for any
integers a > 0 and b > 1, adivb = |a/b].

In multiplicative hashing, we use a hash table of size 2¢ for some integer d (called

the dimension). The formula for hashing an integer x € {0,...,2" — 1} is
hash(x) = ((z - x) mod 2¥) div2“"¢ .

Here, z is a randomly chosen odd integer in {1,...,2¥ — 1}. This hash function can be
realized very efficiently by observing that, by default, operations on integers are already
done modulo 2 where w is the number of bits in an integer. (See Figure 5.1.) Furthermore,
integer division by 2"7¢ is equivalent to dropping the rightmost w — d bits in a binary
representation (which is implemented by shifting the bits right by w — d). In this way, the

code that implements the above formula is simpler than the formula itself:
ChainedHashTable

int hash(Object x) {
return (z * x.hashCode()) >>> (w-d);
}

The following lemma, whose proof is deferred until later in this sec